Formal Methods for Software Development Propositional and (Linear) Temporal Logic

Wolfgang Ahrendt

12th September 2017

Recapitulation: Formalisation

Formalisation: Syntax, Semantics

Formalisation: Syntax, Semantics, Proving

Formal Verification: Model Checking

Formal Verification: Model Checking

Formal Verification: Model Checking

The Big Picture: Syntax, Semantics, Calculus

Simplest Case: Propositional Logic

Simplest Case: Propositional Logic—Syntax

Syntax of Propositional Logic

Signature

A set of Propositional Variables $A P$
('atomic propositions', with typical elements p, q, r, \ldots)

Propositional Connectives

true, false, $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$

Set of Propositional Formulas For

- Truth constants true, false and variables $A P$ are formulas
- If ϕ and ψ are formulas then

$$
\neg \phi, \quad \phi \wedge \psi, \quad \phi \vee \psi, \quad \phi \rightarrow \psi, \quad \phi \leftrightarrow \psi
$$

are also formulas

- There are no other formulas (inductive definition)

Remark on Concrete Syntax

	Text book	SpIN	
Negation	\neg	$!$	
Conjunction	\wedge	$\& \&$	
Disjunction	\vee	$\\|$	
Implication	\rightarrow, \supset	\rightarrow	
Equivalence	\leftrightarrow	$<-$	

Remark on Concrete Syntax

	Text book	Spin	
Negation	\neg	$!$	
Conjunction	\wedge	$\& \&$	
Disjunction	\vee	$\\|$	
Implication	\rightarrow, \supset	\rightarrow	
Equivalence	\leftrightarrow	$<-$	

We use mostly the textbook notation, except for tool-specific slides, input files.

Simplest Case: Propositional Logic

Simplest Case: Propositional Logic

Semantics of Propositional Logic

Interpretation \mathcal{I}
Assigns a truth value to each propositional variable

$$
\mathcal{I}: A P \rightarrow\{T, F\}
$$

Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

$$
\mathcal{I}: A P \rightarrow\{T, F\}
$$

Example
Let $A P=\{p, q\}$

$$
p \rightarrow(q \rightarrow p)
$$

$$
\begin{array}{lll}
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

$$
\mathcal{I}: A P \rightarrow\{T, F\}
$$

Example
Let $A P=\{p, q\}$

$$
p \rightarrow(q \rightarrow p)
$$

$$
\begin{array}{lll}
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in each interpretation \mathcal{I}_{i} ?

Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

$$
\mathcal{I}: A P \rightarrow\{T, F\}
$$

Valuation Function

$v a l_{\mathcal{I}}$: Continuation of \mathcal{I} on For $_{0}$

$$
\operatorname{val}_{\mathcal{I}}: \text { Foro } \rightarrow\{T, F\}
$$

$v a l_{\mathcal{I}}($ true $)=T$
$v a l_{\mathcal{I}}$ (false) $=F$
$\operatorname{val}_{\mathcal{I}}\left(p_{i}\right)=\mathcal{I}\left(p_{i}\right)$

Semantics of Propositional Logic (Cont'd)

Valuation function (Cont'd)

$\operatorname{val}_{\mathcal{I}}(\neg \phi)= \begin{cases}T & \text { if } \operatorname{val}_{\mathcal{I}}(\phi)=F \\ F & \text { otherwise }\end{cases}$
$\operatorname{val}_{\mathcal{I}}(\phi \wedge \psi)= \begin{cases}T & \text { if } \operatorname{val}_{\mathcal{I}}(\phi)=T \text { and } \operatorname{val}_{\mathcal{I}}(\psi)=T \\ F & \text { otherwise }\end{cases}$
$\operatorname{val}_{\mathcal{I}}(\phi \vee \psi)= \begin{cases}T & \text { if } \operatorname{va} \mathcal{I}_{\mathcal{I}}(\phi)=T \text { or } \operatorname{val}_{\mathcal{I}}(\psi)=T \\ F & \text { otherwise }\end{cases}$
$\operatorname{val}_{\mathcal{I}}(\phi \rightarrow \psi)= \begin{cases}T & \text { if } \operatorname{val}_{\mathcal{I}}(\phi)=F \text { or } \operatorname{val}_{\mathcal{I}}(\psi)=T \\ F & \text { otherwise }\end{cases}$
$\operatorname{val}_{\mathcal{I}}(\phi \leftrightarrow \psi)= \begin{cases}T & \text { if } \operatorname{va} \mathcal{I}_{\mathcal{I}}(\phi)=\operatorname{val}_{\mathcal{I}}(\psi) \\ F & \text { otherwise }\end{cases}$

Valuation Examples

Example

Let $A P=\{p, q\}$

$$
p \rightarrow(q \rightarrow p)
$$

$$
\begin{array}{ccc}
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

Valuation Examples

Example
Let $A P=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?
$\operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=$

Valuation Examples

Example
Let $A P=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?
$\operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T$ iff $\operatorname{val}_{\mathcal{I}_{2}}(p)=F$ or $\operatorname{val}_{\mathcal{I}_{2}}(q \rightarrow p)=T$

Valuation Examples

Example
Let $A P=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{va}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or } \operatorname{val}_{\mathcal{I}_{2}}(q \rightarrow p)=T \\
& \operatorname{va}_{\mathcal{I}_{2}}(p)=
\end{aligned}
$$

Valuation Examples

Example
Let $A P=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or } \operatorname{val}_{\mathcal{I}_{2}}(q \rightarrow p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(p)=\mathcal{I}_{2}(p)=
\end{aligned}
$$

Valuation Examples

Example
Let $A P=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or val } \mathcal{I}_{2}(q \rightarrow p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(p)=\mathcal{I}_{2}(p)=T
\end{aligned}
$$

Valuation Examples

Example
Let $A P=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or val } \mathcal{I}_{\mathcal{I}_{2}}(q \rightarrow p)=T \\
& \operatorname{va}_{\mathcal{I}_{2}}(p)=\underset{\mathcal{I}_{2}(p)}{ }=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(q \rightarrow p) \stackrel{ }{=}
\end{aligned}
$$

Valuation Examples

Example
Let $A P=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or val } \mathcal{I}_{2}(q \rightarrow p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(p)=\mathcal{I}_{2}(p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(q \rightarrow p)=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(q)=F \text { or } \operatorname{val}_{\mathcal{I}_{2}}(p)=T
\end{aligned}
$$

Valuation Examples

Example
Let $A P=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or val } \mathcal{I}_{\mathcal{I}_{2}}(q \rightarrow p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(p)=T \\
& \left.\operatorname{val}_{\mathcal{I}_{2}}(q)=p\right)=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(q)=F \text { or val } \mathcal{I}_{\mathcal{I}_{2}}(p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(q)=
\end{aligned}
$$

Valuation Examples

Example
Let $A P=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or val } \mathcal{I}_{\mathcal{I}_{2}}(q \rightarrow p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(p)=T \\
& \left.\operatorname{val}_{\mathcal{I}_{2}}(q)=p\right)=T=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(q)=F \text { or val } \mathcal{I}_{\mathcal{I}_{2}}(p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(q)=\mathcal{I}_{2}(q)=
\end{aligned}
$$

Valuation Examples

Example
Let $A P=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or val } \mathcal{I}_{\mathcal{I}_{2}}(q \rightarrow p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(q \rightarrow p)=T(p)=T \text { iff } \mathcal{I a l}_{\mathcal{I}_{2}}(q)=F \text { or val } \mathcal{I}_{\mathcal{I}_{2}}(p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(q)=\mathcal{I}_{2}(q)=F
\end{aligned}
$$

Semantic Notions of Propositional Logic

Let $\phi \in$ For $_{0}, \Gamma \subseteq$ For $_{0}$
Definition (Satisfying Interpretation, Consequence Relation)
\mathcal{I} satisfies ϕ (write: $\mathcal{I} \models \phi$) iff $\operatorname{val}_{\mathcal{I}}(\phi)=T$
ϕ follows from Γ (write: $\Gamma \models \phi$) iff for all interpretations \mathcal{I} :

$$
\text { If } \mathcal{I} \models \psi \text { for all } \psi \in \Gamma \text {, then also } \mathcal{I} \models \phi
$$

Semantic Notions of Propositional Logic

Let $\phi \in$ For $_{0}, \Gamma \subseteq$ For $_{0}$
Definition (Satisfying Interpretation, Consequence Relation)
\mathcal{I} satisfies ϕ (write: $\mathcal{I} \models \phi$) iff $\operatorname{val}_{\mathcal{I}}(\phi)=T$
ϕ follows from Γ (write: $\Gamma \models \phi$) iff for all interpretations \mathcal{I} :

$$
\text { If } \mathcal{I} \models \psi \text { for all } \psi \in \Gamma \text {, then also } \mathcal{I} \models \phi
$$

Definition (Satisfiability, Validity)

A formula is satisfiable if it is satisfied by some interpretation.
If every interpretation satisfies ϕ (write: $\models \phi$) then ϕ is called valid.

Semantics of Propositional Logic: Examples

Formula (same as before)

$$
p \rightarrow(q \rightarrow p)
$$

Semantics of Propositional Logic: Examples

Formula (same as before)

$$
p \rightarrow(q \rightarrow p)
$$

Is this formula valid?

$$
\models p \rightarrow(q \rightarrow p) ?
$$

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?
Satisfying Interpretation?

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?
Satisfying Interpretation? $\mathcal{I}(p)=T, \mathcal{I}(q)=T$

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?
Satisfying Interpretation? $\mathcal{I}(p)=T, \mathcal{I}(q)=T$
Other Satisfying Interpretations?

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?

Satisfying Interpretation? $\quad \mathcal{I}(p)=T, \mathcal{I}(q)=T$
Other Satisfying Interpretations?

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?

Satisfying Interpretation? $\quad \mathcal{I}(p)=T, \mathcal{I}(q)=T$
Other Satisfying Interpretations?
x
Therefore, not valid!

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?
Satisfying Interpretation? $\quad \mathcal{I}(p)=T, \mathcal{I}(q)=T$
Other Satisfying Interpretations?
Therefore, not valid!

$$
p \wedge((\neg p) \vee q) \vDash q \vee r
$$

Does it hold?

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?
Satisfying Interpretation? $\quad \mathcal{I}(p)=T, \mathcal{I}(q)=T$
Other Satisfying Interpretations?
Therefore, not valid!

$$
p \wedge((\neg p) \vee q) \models q \vee r
$$

Does it hold? Yes. Why?

An Exercise in Formalisation

```
1 byte \(n\);
2 active proctype [2] \(P()\) \{
\(3 \mathrm{n}=0\);
\(4 \mathrm{n}=\mathrm{n}+1\)
\(5\}\)
```

Can we characterise the states of P propositionally?

An Exercise in Formalisation

```
1 byte n;
2 active proctype [2] P() {
3n = 0;
4n=n + 1
5}
```

Can we characterise the states of P propositionally?
Find a propositional formula ϕ_{P} which is true if and only if it describes a possible state of P.

An Exercise in Formalisation

```
1 byte n;
2 active proctype [2] P() {
3n = 0;
4 n = n + 1
5}
```

AP: $N_{0}, N_{1}, N_{2}, \ldots, N_{7} 8$-bit representation of byte $P \mathrm{CO}_{3}, P \mathrm{PO}_{4}, P \mathrm{PO}_{5}, P C 1_{3}, P C 1_{4}, P C 1_{5}$ next instruction pointer
Which interpretations do we need to "exclude"?
$\phi_{\mathrm{P}}:=$

An Exercise in Formalisation

```
1 byte n;
2 active proctype [2] P() {
3n = 0;
4 n = n + 1
5}
```

AP: $N_{0}, N_{1}, N_{2}, \ldots, N_{7} 8$-bit representation of byte $P \mathrm{CO}_{3}, P \mathrm{PO}_{4}, P \mathrm{PO}_{5}, P C 1_{3}, P C 1_{4}, P C 1_{5}$ next instruction pointer
Which interpretations do we need to "exclude"?

- The variable n is represented by eight bits, all values possible

An Exercise in Formalisation

```
1 byte n;
2 active proctype [2] P() {
3 n = 0;
4 n = n + 1
5}
```

AP: $N_{0}, N_{1}, N_{2}, \ldots, N_{7} 8$-bit representation of byte $P C 0_{3}, P C 0_{4}, P C 0_{5}, P C 1_{3}, P C 1_{4}, P C 1_{5}$ next instruction pointer Which interpretations do we need to "exclude"?

- The variable n is represented by eight bits, all values possible
- A process cannot be at two positions at the same time
$\phi_{\mathrm{P}}:=\left(\left(\left(\mathrm{PCO}_{3} \wedge \neg \mathrm{PCO}_{4} \wedge \neg P C 0_{5}\right) \vee \ldots\right) \wedge\right.$

An Exercise in Formalisation

```
1 byte n;
2 active proctype [2] P() {
3n = 0;
4 n = n + 1
5}
```

AP: $N_{0}, N_{1}, N_{2}, \ldots, N_{7} 8$-bit representation of byte $P \mathrm{PO}_{3}, P C 0_{4}, P C 0_{5}, P C 1_{3}, P C 1_{4}, P C 1_{5}$ next instruction pointer Which interpretations do we need to "exclude"?

- The variable n is represented by eight bits, all values possible
- A process cannot be at two positions at the same time
- If neither process 0 nor process 1 are at position 5 , then n is zero

$$
\phi_{\mathrm{P}}:=\binom{\left(\left(P C 0_{3} \wedge \neg P C 0_{4} \wedge \neg P C 0_{5}\right) \vee \ldots\right) \wedge}{\left(\left(\neg P C 0_{5} \wedge \neg P C 1_{5}\right) \Longrightarrow\left(\neg N_{0} \wedge \ldots \wedge \neg N_{7}\right)\right)}
$$

An Exercise in Formalisation

```
1 byte n;
2 active proctype [2] P() {
3 n = 0;
4 n = n + 1
5}
```

AP: $N_{0}, N_{1}, N_{2}, \ldots, N_{7} 8$-bit representation of byte $P \mathrm{PO}_{3}, P C 0_{4}, P C 0_{5}, P C 1_{3}, P C 1_{4}, P C 1_{5}$ next instruction pointer Which interpretations do we need to "exclude"?

- The variable n is represented by eight bits, all values possible
- A process cannot be at two positions at the same time
- If neither process 0 nor process 1 are at position 5 , then n is zero

$$
\phi_{\mathrm{P}}:=\binom{\left(\left(P C 0_{3} \wedge \neg P C 0_{4} \wedge \neg P C 0_{5}\right) \vee \ldots\right) \wedge}{\left(\left(\neg P C 0_{5} \wedge \neg P C 1_{5}\right) \Longrightarrow\left(\neg N_{0} \wedge \ldots \wedge \neg N_{7}\right)\right) \wedge \ldots}
$$

Is Propositional Logic Enough?

Can design for a program P a formula Φ_{P} describing all reachable states
For a given property Ψ the consequence relation

$$
\Phi_{p} \models \Psi
$$

holds when Ψ is true in any possible state reachable in any run of P

Is Propositional Logic Enough?

Can design for a program P a formula Φ_{P} describing all reachable states
For a given property Ψ the consequence relation

$$
\Phi_{p} \models \Psi
$$

holds when Ψ is true in any possible state reachable in any run of P

```
But How to Express Properties Involving State Changes?
In any run of a program P
- \(n\) will become greater than 0 eventually?
- \(n\) changes its value infinitely often etc.
```


Is Propositional Logic Enough?

Can design for a program P a formula Φ_{P} describing all reachable states
For a given property Ψ the consequence relation

$$
\Phi_{p} \models \Psi
$$

holds when Ψ is true in any possible state reachable in any run of P

But How to Express Properties Involving State Changes?
In any run of a program P

- n will become greater than 0 eventually?
- n changes its value infinitely often
etc.
\Rightarrow Need a more expressive logic: (Linear) Temporal Logic

Transition Systems (aka Kripke Structures)

We assume $A P=\{p, q\}$

Notation

Transition Systems (aka Kripke Structures)

- Each state has its own interpretation $\mathcal{I}:\{p, q\} \rightarrow\{T, F\}$
- Convention: list interpretation of variables in lexicographic order
- Computations, or runs, are infinite paths through states
- 'finite' runs simulated by looping on terminal state
- Prefix of some example runs:
- $s s^{\prime} s^{\prime \prime} s^{\prime} s^{\prime \prime} s^{\prime} s^{\prime \prime} s^{\prime \prime \prime} \ldots$
- $s s^{\prime} s^{\prime \prime} s^{\prime \prime \prime} s^{\prime \prime} s^{\prime} s^{\prime \prime} s^{\prime} \ldots$

Formal Verification: Model Checking

Transition System of some PROMELA Model

Notation

Transition Systems: Formal Definition

Definition (Transition System)

A transition system $\mathcal{T}=\left(S, \rightarrow, S_{0}, L\right)$ is composed of a set of states S, a transition relation $\rightarrow \subseteq S \times S$, a set $\emptyset \neq S_{0} \subseteq S$ of initial states, and a labeling L of each state $s \in S$ with a propositional interpretation $L(s)$.

Transition Systems: Formal Definition

Definition (Transition System)

A transition system $\mathcal{T}=\left(S, \rightarrow, S_{0}, L\right)$ is composed of a set of states S, a transition relation $\rightarrow \subseteq S \times S$, a set $\emptyset \neq S_{0} \subseteq S$ of initial states, and a labeling L of each state $s \in S$ with a propositional interpretation $L(s)$.

Definition (Run of Transition System)

A run of $\mathcal{T}=\left(S, \rightarrow, S_{o}, L\right)$ is a sequence of states
$\sigma=s_{0} s_{1} \ldots$
such that $s_{0} \in S_{0}$ and $s_{i} \rightarrow s_{i+1}$ for all $i \geq 0$.

Transition Systems: Formal Definition

Definition (Transition System)

A transition system $\mathcal{T}=\left(S, \rightarrow, S_{0}, L\right)$ is composed of a set of states S, a transition relation $\rightarrow \subseteq S \times S$, a set $\emptyset \neq S_{0} \subseteq S$ of initial states, and a labeling L of each state $s \in S$ with a propositional interpretation $L(s)$.

Definition (Run of Transition System)
A run of $\mathcal{T}=\left(S, \rightarrow, S_{o}, L\right)$ is a sequence of states
$\sigma=s_{0} s_{1} \ldots$
such that $s_{0} \in S_{0}$ and $s_{i} \rightarrow s_{i+1}$ for all $i \geq 0$.

Definition (Trace)

The trace $\operatorname{tr}(\sigma)$ of a run $\sigma=s_{0} s_{1} \ldots$ is the sequence
$\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$
such that $\mathcal{I}_{i}=L\left(s_{i}\right)$.
A trace of \mathcal{T} is $\operatorname{tr}(\sigma)$ for any run σ of \mathcal{T}.

Runs and Traces Visually

- Given a run $\sigma=s_{0} s_{1} s_{2} s_{3} s_{4} \ldots$

- Each state s of a transition system is labelled, via $L(s)$, with an interpretation

- If we name each interpretations $L\left(s_{i}\right)$ as \mathcal{I}_{i}, we have

- The trace $\operatorname{tr}(\sigma)$ is: $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{3} \ldots$

Notations: Power Set and Sequences

Assume sets X and Y.

Power Set

2^{X} is the set of all subsets of X (called 'power set of X^{\prime}).

Finite Sequences

Y^{*} is the set of all finite sequences (words) of elements of Y.

Infinite Sequences

Y^{ω} is the set of all infinite sequences (words) of elements of Y.

Power Sets and Sequences: Example

Given the set of atomic propositions $A P=\{p, q\}$.

Power Set

$2^{A P}=\{\{ \},\{p\},\{p\},\{p, q\}\}$

Finite Sequences

$\left(2^{A P}\right)^{*}$: set of all finite sequences of elements of $2^{A P}$.
E.g.: $\{p\}\left\}\{p, q\}\{p\} \in\left(2^{A P}\right)^{*}\right.$ (and infitely many others)

Infinite Sequences

$\left(2^{A P}\right)^{\omega}$: set of all infinite sequences of elements of $2^{A P}$.
E.g.: $\{p\}\{p, q\}\{p\}\left\}\{p\}\{p, q\}\{p\}\left\} \ldots \in\left(2^{A P}\right)^{\omega}\right.\right.$
(and uncountably many others)

Interpretations as Sets

Interpretations over atomic propositions $A P$ can be represented as elements of $2^{A P}$.

Interpretations as Sets

Interpretations over atomic propositions $A P$ can be represented as elements of $2^{A P}$.
E.g., assume $A P=\{p, q\}$
l.e., $2^{A P}=\{\{ \},\{p\},\{p\},\{p, q\}\}$

Interpretations as Sets

Interpretations over atomic propositions $A P$ can be represented as elements of $2^{A P}$.

$$
\begin{aligned}
& \text { E.g., assume } A P=\{p, q\} \\
& \text { l.e., } 2^{A P}=\{\{ \},\{p\},\{p\},\{p, q\}\} \\
& \begin{array}{lll}
& p & q \\
\hline \mathcal{I}_{1} & F & F
\end{array} \text { represented as }\} \\
& \begin{array}{lll}
& p & q \\
\hline \mathcal{I}_{2} & T & F
\end{array} \text { represented as }\{p\} \\
& \begin{array}{lll}
& p & q \\
\hline \mathcal{I}_{3} & F & T
\end{array} \text { represented as }\{q\} \\
& \begin{array}{lll}
& p & q \\
\hline \mathcal{I}_{4} & T & T
\end{array} \text { represented as }\{p, q\}
\end{aligned}
$$

Runs and Traces revisited

Given states S and atomic propositions $A P$.

- A run $\sigma=s_{0} s_{1} s_{2} s_{3} s_{4} \ldots$ is an element of S^{ω}.

Runs and Traces revisited

Given states S and atomic propositions $A P$.

- A run $\sigma=s_{0} s_{1} s_{2} s_{3} s_{4} \ldots$ is an element of S^{ω}.
- A trace $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{3} \ldots$ is an element of of $\left(2^{A P}\right)^{\omega}$.

Runs and Traces revisited

Given states S and atomic propositions $A P$.

- A run $\sigma=s_{0} s_{1} s_{2} s_{3} s_{4} \ldots$ is an element of S^{ω}.
- A trace $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{3} \ldots$ is an element of of $\left(2^{A P}\right)^{\omega}$.

An example of a trace $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{3} \ldots$ may look like:
$\tau=\{p\}\{p, q\}\{p\}\{ \} \ldots$

Linear Time Properties

Definition (Linear Time Property)

Given a set of atomic propositions $A P$.
Each subset P of $\left(2^{A P}\right)^{\omega}$ is a linear time (LT) property over $A P$.

Linear Time Properties

Definition (Linear Time Property)

Given a set of atomic propositions $A P$.
Each subset P of $\left(2^{A P}\right)^{\omega}$ is a linear time (LT) property over $A P$.

Intuition:

- Assume a trace property $P \subseteq\left(2^{A P}\right)^{\omega}$.
- A trace t fulfils the property P iff $t \in P$.
- A trace t violates the property P iff $t \notin P$.

Classes of LT Properties

The LT properties can be devided in three classes:

Classes of LT Properties

The LT properties can be devided in three classes:

- Safety properties
- Liveness properties
- Properties that are neither safety nor liveness properties

Safety Properties

Definition (Safety Properties, Bad Prefixes)

An LT property $P_{\text {safe }}$ over $A P$ is called a safety property if for all words $\tau \in\left(2^{A P}\right)^{\omega} \backslash P_{\text {safe }}$, there exists a finite prefix $\hat{\tau}$ of τ such that

Safety Properties

Definition (Safety Properties, Bad Prefixes)

An LT property $P_{\text {safe }}$ over $A P$ is called a safety property if for all words $\tau \in\left(2^{A P}\right)^{\omega} \backslash P_{\text {safe }}$, there exists a finite prefix $\hat{\tau}$ of τ such that

$$
P_{\text {safe }} \cap\left\{\tau^{\prime} \in\left(2^{A P}\right)^{\omega} \mid \hat{\tau} \text { is a finite prefix of } \tau^{\prime}\right\}=\emptyset
$$

Safety Properties

Definition (Safety Properties, Bad Prefixes)

An LT property $P_{\text {safe }}$ over $A P$ is called a safety property if for all words $\tau \in\left(2^{A P}\right)^{\omega} \backslash P_{\text {safe }}$, there exists a finite prefix $\hat{\tau}$ of τ such that

$$
P_{\text {safe }} \cap\left\{\tau^{\prime} \in\left(2^{A P}\right)^{\omega} \mid \hat{\tau} \text { is a finite prefix of } \tau^{\prime}\right\}=\emptyset
$$

Each violating trace τ has a finite, 'bad prefix' $\hat{\tau}$.

Liveness Properties

Let $\operatorname{pref}(P)$ be the set of finite prefixes of elements of P.

Liveness Properties

Let $\operatorname{pref}(P)$ be the set of finite prefixes of elements of P.

Definition (Liveness Properties)

An LT property $P_{\text {live }}$ over $A P$ is called a liveness property whenever $\operatorname{pref}\left(P_{\text {live }}\right)=\left(2^{A P}\right)^{*}$

Liveness Properties

Let $\operatorname{pref}(P)$ be the set of finite prefixes of elements of P.

Definition (Liveness Properties)

An LT property $P_{\text {live }}$ over $A P$ is called a liveness property whenever $\operatorname{pref}\left(P_{\text {live }}\right)=\left(2^{A P}\right)^{*}$

A liveness property allows every finite prefix. (It cannot be refuted in finite time.)

Linear Temporal Logic

An extension of propositional logic that allows to specify properties of all traces

Linear Temporal Logic-Syntax

An extension of propositional logic that allows to specify properties of all traces

Syntax

Based on propositional signature and syntax
Extension with three connectives (in this course):
Always If ϕ is a formula, then so is $\square \phi$
Eventually If ϕ is a formula, then so is $\diamond \phi$
Until If ϕ and ψ are formulas, then so is $\phi \mathcal{U} \psi$

Concrete Syntax

Linear Temporal Logic Syntax: Examples

Let $A P=\{p, q\}$ be the set of propositional variables.

- p

Linear Temporal Logic Syntax: Examples

Let $A P=\{p, q\}$ be the set of propositional variables.

- p
- false

Linear Temporal Logic Syntax: Examples

Let $A P=\{p, q\}$ be the set of propositional variables.

- p
- false
- $p \rightarrow q$

Linear Temporal Logic Syntax: Examples

Let $A P=\{p, q\}$ be the set of propositional variables.

- p
- false
- $p \rightarrow q$
- Δp

Linear Temporal Logic Syntax: Examples

Let $A P=\{p, q\}$ be the set of propositional variables.

- p
- false
- $p \rightarrow q$
- Δp
- $\square q$

Linear Temporal Logic Syntax: Examples

Let $A P=\{p, q\}$ be the set of propositional variables.

- p
- false
- $p \rightarrow q$
- Δp
- $\square q$
- $\diamond \square(p \rightarrow q)$

Linear Temporal Logic Syntax: Examples

Let $A P=\{p, q\}$ be the set of propositional variables.

- p
- false
- $p \rightarrow q$
- Δp
- $\square q$
- $\diamond \square(p \rightarrow q)$
- $(\square p) \rightarrow((\diamond p) \vee \neg q)$

Linear Temporal Logic Syntax: Examples

Let $A P=\{p, q\}$ be the set of propositional variables.

- p
- false
- $p \rightarrow q$
- Δp
- $\square q$
- $\diamond \square(p \rightarrow q)$
- $(\square p) \rightarrow((\diamond p) \vee \neg q)$
- $p \mathcal{U}(\square q)$

Temporal Logic-Semantics

Valuation of temporal formula relative to trace (infinite sequence of interpretations)

Temporal Logic—Semantics

Valuation of temporal formula relative to trace (infinite sequence of interpretations)

Definition (Validity Relation)

Validity of temporal formula depends on traces $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$
$\tau \models p \quad$ iff $\quad \mathcal{I}_{0}(p)=T$, for $p \in A P$.

Temporal Logic—Semantics

Valuation of temporal formula relative to trace (infinite sequence of interpretations)

Definition (Validity Relation)

Validity of temporal formula depends on traces $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$

```
\tau\modelsp iff }\quad\mp@subsup{\mathcal{I}}{0}{}(p)=T, for p\inAP
\tau\models\neg\phi iff not \tau\models\phi (write \tau}\vDash\models\phi
```


Temporal Logic—Semantics

Valuation of temporal formula relative to trace (infinite sequence of interpretations)

Definition (Validity Relation)

Validity of temporal formula depends on traces $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$

```
\tau\modelsp iff }\quad\mp@subsup{\mathcal{I}}{0}{}(p)=T, for p\inAP
\tau\models\neg\phi iff not \tau\models\phi (write \tau}\vDash\models\phi
\tau\models\phi\wedge\psi iff }\tau\models\phi\mathrm{ and }\tau\models
```


Temporal Logic—Semantics

Valuation of temporal formula relative to trace (infinite sequence of interpretations)

Definition (Validity Relation)

Validity of temporal formula depends on traces $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$

$\tau \models p$	iff	$\mathcal{I}_{0}(p)=T$, for $p \in A P$.
$\tau \models \neg \phi$	iff	not $\tau \models \phi$ (write $\tau \not \models \phi$)
$\tau \models \phi \wedge \psi$	iff	$\tau \models \phi$ and $\tau \models \psi$
$\tau \models \phi \vee \psi$	iff	$\tau \models \phi$ or $\tau \models \psi$
$\tau \models \phi \rightarrow \psi$	iff	$\tau \not \models \phi$ or $\tau \models \psi$

Temporal Logic—Semantics

Valuation of temporal formula relative to trace (infinite sequence of interpretations)

Definition (Validity Relation)

Validity of temporal formula depends on traces $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$

$\tau \models p$	iff	$\mathcal{I}_{0}(p)=T$, for $p \in A P$.
$\tau \models \neg \phi$	iff	not $\tau \models \phi \quad$ (write $\tau \not \models \phi$)
$\tau \models \phi \wedge \psi$	iff	$\tau \models \phi$ and $\tau \models \psi$
$\tau \models \phi \vee \psi$	iff	$\tau \models \phi$ or $\tau \models \psi$
$\tau \models \phi \rightarrow \psi$	iff	$\tau \not \models \phi$ or $\tau \models \psi$

Temporal connectives?

Temporal Logic-Semantics (Cont'd)

Trace τ

Temporal Logic-Semantics (Cont'd)

Trace τ

If $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$, then $\left.\tau\right|_{i}$ denotes the suffix $\mathcal{I}_{i} \mathcal{I}_{i+1} \ldots$ of τ.

Temporal Logic-Semantics (Cont'd)

Trace τ

If $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$, then $\left.\tau\right|_{i}$ denotes the suffix $\mathcal{I}_{i} \mathcal{I}_{i+1} \ldots$ of τ.

Definition (Validity Relation for Temporal Connectives)
Given a trace $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$

Temporal Logic-Semantics (Cont'd)

Trace τ

If $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$, then $\left.\tau\right|_{i}$ denotes the suffix $\mathcal{I}_{i} \mathcal{I}_{i+1} \ldots$ of τ.

Definition (Validity Relation for Temporal Connectives)

Given a trace $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$
$\tau \models \square \phi \quad$ iff $\left.\quad \tau\right|_{k} \models \phi$ for all $k \geq 0$

Temporal Logic-Semantics (Cont'd)

Trace τ

If $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$, then $\left.\tau\right|_{i}$ denotes the suffix $\mathcal{I}_{i} \mathcal{I}_{i+1} \ldots$ of τ.

Definition (Validity Relation for Temporal Connectives)

Given a trace $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$
$\tau \models \square \phi \quad$ iff $\left.\quad \tau\right|_{k} \models \phi$ for all $k \geq 0$
$\tau \models \diamond \phi \quad$ iff $\left.\quad \tau\right|_{k} \models \phi$ for some $k \geq 0$

Temporal Logic-Semantics (Cont'd)

Trace τ

If $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$, then $\left.\tau\right|_{i}$ denotes the suffix $\mathcal{I}_{i} \mathcal{I}_{i+1} \ldots$ of τ.

Definition (Validity Relation for Temporal Connectives)

Given a trace $\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots$

$$
\begin{array}{lll}
\tau \models \square \phi & \text { iff } & \left.\tau\right|_{k} \models \phi \text { for all } k \geq 0 \\
\tau \models \diamond \phi & \text { iff } & \left.\tau\right|_{k} \models \phi \text { for some } k \geq 0 \\
\tau \models \phi \mathcal{U} \psi & \text { iff } & \left.\tau\right|_{k} \models \psi \text { for some } k \geq 0, \text { and }\left.\tau\right|_{j} \models \phi \text { for all } 0 \leq j<k \\
& & \\
& \text { (if } k=0 \text { then } \phi \text { needs never hold) }
\end{array}
$$

Safety and Liveness Properties

Safety Properties

- Always-formulas called safety properties:
"something bad never happens"
- Example:
$\square(\neg$ P_in_CS $\vee \neg$ Q_in_CS $)$
'simultaneous visit to the critical sections never happens'

Safety and Liveness Properties

Safety Properties

- Always-formulas called safety properties:
"something bad never happens"
- Example:
$\square(\neg$ P_in_CS $\vee \neg$ Q_in_CS $)$
'simultaneous visit to the critical sections never happens'

Liveness Properties

- Eventually-formulas called liveness properties: "something good happens eventually"
- Example:
\diamond P_in_CS
' P enters its critical section eventually'

Complex Properties

What does this mean?

$$
\tau \models \square \diamond \phi
$$

Complex Properties

Infinitely Often

$$
\tau \models \square \diamond \phi
$$

"During trace τ the formula ϕ becomes true infinitely often"

Validity of Temporal Logic

```
Definition (Validity)
\phi is valid, write }\models\phi\mathrm{ , iff }\tau\models\phi\mathrm{ for all traces }\tau=\mp@subsup{\mathcal{I}}{0}{}\mp@subsup{\mathcal{I}}{1}{}
```


Validity of Temporal Logic

```
Definition (Validity)
\(\phi\) is valid, write \(\models \phi\), iff \(\tau \models \phi\) for all traces \(\tau=\mathcal{I}_{0} \mathcal{I}_{1} \ldots\)
```


Representation of Traces

Can represent a set of traces as a sequence of propositional formulas:

- $\phi_{0} \phi_{1}, \ldots$ represents all traces $\mathcal{I}_{0} \mathcal{I}_{1} \ldots$ such that $\mathcal{I}_{i}=\phi_{i}$ for $i \geq 0$

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?

No, there is a trace where it is not valid:

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?

No, there is a trace where it is not valid: ($\neg \phi \neg \phi \neg \phi \ldots$)

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?

No, there is a trace where it is not valid:

$$
(\neg \phi \neg \phi \neg \phi \ldots)
$$

Valid in some trace?

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?

No, there is a trace where it is not valid: ($\neg \phi \neg \phi \neg \phi \ldots$)
Valid in some trace?
Yes, for example: $(\neg \phi \phi \phi \ldots)$

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?

No, there is a trace where it is not valid:

$$
(\neg \phi \neg \phi \neg \phi \ldots)
$$

Valid in some trace?
Yes, for example: $(\neg \phi \phi \phi \ldots)$

$$
\square \phi \rightarrow \phi \quad(\neg \square \phi) \leftrightarrow(\diamond \neg \phi) \quad \diamond \phi \leftrightarrow(\text { true } \mathcal{U} \phi)
$$

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?
No, there is a trace where it is not valid:

$$
(\neg \phi \neg \phi \neg \phi \ldots)
$$

Valid in some trace?
Yes, for example: $(\neg \phi \phi \phi \ldots)$

$$
\square \phi \rightarrow \phi \quad(\neg \square \phi) \leftrightarrow(\diamond \neg \phi) \quad \diamond \phi \leftrightarrow(\text { true } \mathcal{U} \phi)
$$

All are valid! (proof is exercise)

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?
No, there is a trace where it is not valid:

$$
(\neg \phi \neg \phi \neg \phi \ldots)
$$

Valid in some trace?
Yes, for example: $(\neg \phi \phi \phi \ldots)$

$$
\square \phi \rightarrow \phi \quad(\neg \square \phi) \leftrightarrow(\diamond \neg \phi) \quad \diamond \phi \leftrightarrow(\text { true } \mathcal{U} \phi)
$$

All are valid! (proof is exercise)

- \square is reflexive
- \square and \diamond are dual connectives
- \square and \diamond can be expressed with only using \mathcal{U}

Temporal Logic-Semantics (Cont'd)

Extension of validity of temporal formulas to transition systems:

Definition (Validity Relation)

Given a transition system $\mathcal{T}=\left(S, \rightarrow, S_{0}, L\right)$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\tau \models \phi$ for all traces τ of \mathcal{T}.

Formal Verification: Model Checking

ω-Languages

Given a finite alphabet (vocabulary) Σ
A word $w \in \Sigma^{*}$ is a finite sequence

$$
w=a_{o} \ldots a_{n}
$$

with $a_{i} \in \Sigma, i \in\{0, \ldots, n\}$
$\mathcal{L} \subseteq \Sigma^{*}$ is called a language

ω-Languages

Given a finite alphabet (vocabulary) Σ
An ω-word $w \in \Sigma^{\omega}$ is an infinite sequence

$$
w=a_{o} \ldots a_{k} \ldots
$$

with $a_{i} \in \Sigma, i \in \mathbb{N}$
$\mathcal{L}^{\omega} \subseteq \Sigma^{\omega}$ is called an ω-language

Büchi Automaton

Definition (Büchi Automaton)

A (non-deterministic) Büchi automaton over an alphabet Σ consists of a

- finite, non-empty set of locations Q
- a transition relation $\delta \subseteq Q \times \Sigma \times Q$
- a non-empty set of initial locations $Q_{0} \subseteq Q$
- a set of accepting locations $F=\left\{f_{1}, \ldots, f_{n}\right\} \subseteq Q$

Example

$\Sigma=\{a, b\}, Q=\left\{q_{1}, q_{2}, q_{3}\right\}, I=\left\{q_{1}\right\}, F=\left\{q_{2}\right\}$

Büchi Automaton-Executions and Accepted Words

Definition (Execution)

Let $\mathcal{B}=\left(Q, \delta, Q_{0}, F\right)$ be a Büchi automaton over alphabet Σ. An execution of \mathcal{B} is a pair (w, v), with

- $w=a_{0} \ldots a_{k} \ldots \in \Sigma^{\omega}$
- $v=q_{0} \ldots q_{k} \ldots \in Q^{\omega}$
where $q_{0} \in Q_{0}$, and $\left(q_{i}, a_{i}, q_{i+1}\right) \in \delta$, for all $i \in \mathbb{N}$

Büchi Automaton-Executions and Accepted Words

Definition (Execution)

Let $\mathcal{B}=\left(Q, \delta, Q_{0}, F\right)$ be a Büchi automaton over alphabet Σ. An execution of \mathcal{B} is a pair (w, v), with

- $w=a_{o} \ldots a_{k} \ldots \in \Sigma^{\omega}$
- $v=q_{0} \ldots q_{k} \ldots \in Q^{\omega}$
where $q_{0} \in Q_{0}$, and $\left(q_{i}, a_{i}, q_{i+1}\right) \in \delta$, for all $i \in \mathbb{N}$

Definition (Accepted Word)

A Büchi automaton \mathcal{B} accepts a word $w \in \Sigma^{\omega}$, if there exists an execution (w, v) of \mathcal{B} where some accepting location $f \in F$ appears infinitely often in v.

Büchi Automaton-Language

Let $\mathcal{B}=\left(Q, \delta, Q_{0}, F\right)$ be a Büchi automaton, then

$$
\mathcal{L}^{\omega}(\mathcal{B})=\left\{w \in \Sigma^{\omega} \mid \mathcal{B} \text { accepts } w\right\}
$$

denotes the ω-language recognised by \mathcal{B}.

Büchi Automaton-Language

Let $\mathcal{B}=\left(Q, \delta, Q_{0}, F\right)$ be a Büchi automaton, then

$$
\mathcal{L}^{\omega}(\mathcal{B})=\left\{w \in \Sigma^{\omega} \mid \mathcal{B} \text { accepts } w\right\}
$$

denotes the ω-language recognised by \mathcal{B}.
An ω-language for which an accepting Büchi automaton exists is called ω-regular language.

Example, ω-Regular Expression

Which language is accepted by the following Büchi automaton?

Example, ω-Regular Expression

Which language is accepted by the following Büchi automaton?

Solution: $(a+b)^{*}(a b)^{\omega}$
$\left[\right.$ NB: $\left.(a b)^{\omega}=a(b a)^{\omega}\right]$

Example, ω-Regular Expression

Which language is accepted by the following Büchi automaton?

Solution: $(a+b)^{*}(a b)^{\omega}$
$\left[\right.$ NB: $\left.(a b)^{\omega}=a(b a)^{\omega}\right]$
ω-regular expressions similar to standard regular expression $a b$ a followed by b
$a+b a$ or b
a^{*} arbitrarily, but finitely often a
new: a^{ω} infinitely often a

Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language $\mathcal{L}^{\omega}(\mathcal{B})$ of a Büchi automaton \mathcal{B} is empty.

Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language $\mathcal{L}^{\omega}(\mathcal{B})$ of a Büchi automaton \mathcal{B} is empty.

Theorem (Closure properties)

The set of ω-regular languages is closed with respect to intersection, union and complement:

- if $\mathcal{L}_{1}, \mathcal{L}_{2}$ are ω-regular then $\mathcal{L}_{1} \cap \mathcal{L}_{2}$ and $\mathcal{L}_{1} \cup \mathcal{L}_{2}$ are ω-regular
- \mathcal{L} is ω-regular then $\Sigma^{\omega} \backslash \mathcal{L}$ is ω-regular

Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language $\mathcal{L}^{\omega}(\mathcal{B})$ of a Büchi automaton \mathcal{B} is empty.

Theorem (Closure properties)

The set of ω-regular languages is closed with respect to intersection, union and complement:

- if $\mathcal{L}_{1}, \mathcal{L}_{2}$ are ω-regular then $\mathcal{L}_{1} \cap \mathcal{L}_{2}$ and $\mathcal{L}_{1} \cup \mathcal{L}_{2}$ are ω-regular
- \mathcal{L} is ω-regular then $\Sigma^{\omega} \backslash \mathcal{L}$ is ω-regular

But in contrast to regular finite automata:
Non-deterministic Büchi automata are strictly more expressive than deterministic ones.

Büchi Automata-More Examples

Language:

Büchi Automata-More Examples

Language: $a(a+b a)^{\omega}$

Büchi Automata-More Examples

Language: $a(a+b a)^{\omega}$

Language:

Büchi Automata-More Examples

Language: $a(a+b a)^{\omega}$

Language: $\left(a^{*} b a\right)^{\omega}$

Formal Verification: Model Checking

Linear Temporal Logic and Büchi Automata

LTL and Büchi Automata are connected

Recall

Definition (Validity Relation)

Given a transition system $\mathcal{T}=\left(S, \rightarrow, S_{0}, L\right)$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\tau \models \phi$ for all traces τ of \mathcal{T}.

A trace of the transition system is an infinite sequence of interpretations.

Linear Temporal Logic and Büchi Automata

LTL and Büchi Automata are connected

Recall

Definition (Validity Relation)

Given a transition system $\mathcal{T}=\left(S, \rightarrow, S_{0}, L\right)$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\tau \models \phi$ for all traces τ of \mathcal{T}.

A trace of the transition system is an infinite sequence of interpretations.

Intended Connection

Given an LTL formula ϕ :
Construct a Büchi automaton accepting exactly those traces (infinite sequences of interpretations) that satisfy ϕ.

Encoding an LTL Formula as a Büchi Automaton

$A P$ set of propositional variables, e.g., $A P=\{r, s\}$
Suitable alphabet Σ for Büchi automaton?

Encoding an LTL Formula as a Büchi Automaton

$A P$ set of propositional variables, e.g., $A P=\{r, s\}$
Suitable alphabet Σ for Büchi automaton?
A state transition of Büchi automaton must represent an interpretation

Encoding an LTL Formula as a Büchi Automaton

$A P$ set of propositional variables, e.g., $A P=\{r, s\}$
Suitable alphabet Σ for Büchi automaton?
A state transition of Büchi automaton must represent an interpretation Choose Σ to be the set of all interpretations over $A P$, encoded as $2^{A P}$. (Recall slide 'Interpretations as Sets')

Example

$$
\Sigma=\{\emptyset,\{r\},\{s\},\{r, s\}\}
$$

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula r over $A P=\{r, s\}$)

A Büchi automaton \mathcal{B} accepting exactly those runs σ satisfying r

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula r over $A P=\{r, s\}$)
A Büchi automaton \mathcal{B} accepting exactly those runs σ satisfying r

In the first state s_{0} (of σ) at least r must hold, the rest is arbitrary

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula r over $A P=\{r, s\}$)
A Büchi automaton \mathcal{B} accepting exactly those runs σ satisfying r

In the first state s_{0} (of σ) at least r must hold, the rest is arbitrary

Example (Büchi automaton for formula $\square r$ over $A P=\{r, s\}$)

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula r over $A P=\{r, s\}$)
A Büchi automaton \mathcal{B} accepting exactly those runs σ satisfying r

In the first state s_{0} (of σ) at least r must hold, the rest is arbitrary

Example (Büchi automaton for formula $\square r$ over $A P=\{r, s\}$)

In all states s (of σ) at least r must hold

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula r over $A P=\{r, s\}$)
A Büchi automaton \mathcal{B} accepting exactly those runs σ satisfying r

In the first state s_{0} (of σ) at least r must hold, the rest is arbitrary

Example (Büchi automaton for formula $\square r$ over $A P=\{r, s\}$)

In all states s (of σ) at least r must hold

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula $\diamond \square r$ over $A P=\{r, s\}$)

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula $\diamond \square r$ over $A P=\{r, s\}$)

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula $\diamond \square r$ over $A P=\{r, s\}$)

Formal Verification: Model Checking

Literature for this Lecture

Ben-Ari Section 5.2.1
(only syntax of LTL)
Baier and Katoen Principles of Model Checking,
May 2008, The MIT Press,
ISBN: 0-262-02649-X
(for in depth theory of model checking)

