
Formal Methods for Software Development
Propositional and (Linear) Temporal Logic

Wolfgang Ahrendt

12th September 2017

FMSD: Linear Temporal Logic /GU 170912 1 / 52



Recapitulation: Formalisation

Real

World

Formal

Artifacts

Formalisation

FMSD: Linear Temporal Logic /GU 170912 2 / 52



Formalisation: Syntax, Semantics

Real

World

Formal

Language

Formal

Semantics

Syntax

Semantics

FMSD: Linear Temporal Logic /GU 170912 2 / 52



Formalisation: Syntax, Semantics

Real

World

Formal

Language

Formal

Semantics

Syntax

Semantics

has model

FMSD: Linear Temporal Logic /GU 170912 2 / 52



Formalisation: Syntax, Semantics

Real

World
has model

Propositional

Logic

Valuation

Syntax

Semantics

FMSD: Linear Temporal Logic /GU 170912 2 / 52



Formalisation: Syntax, Semantics

Real

World
has model

Promela +

Temporal Logic

All Runs σ +

Valuation in σ

Syntax

Semantics

FMSD: Linear Temporal Logic /GU 170912 2 / 52



Formalisation: Syntax, Semantics

Real

World

Temporal Logic

Promela

All Runs σ =

Transition System

Syn
tax

Syn
tax

Semantics

FMSD: Linear Temporal Logic /GU 170912 2 / 52



Formalisation: Syntax, Semantics, Proving
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Formal Verification: Model Checking
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The Big Picture: Syntax, Semantics, Calculus
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Simplest Case: Propositional Logic
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Syntax of Propositional Logic

Signature

A set of Propositional Variables AP
(‘atomic propositions’, with typical elements p, q, r , . . .)

Propositional Connectives

true, false, ∧, ∨, ¬, →, ↔

Set of Propositional Formulas For0
I Truth constants true, false and variables AP are formulas

I If φ and ψ are formulas then

¬φ, φ ∧ ψ, φ ∨ ψ, φ → ψ, φ ↔ ψ

are also formulas

I There are no other formulas (inductive definition)
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Remark on Concrete Syntax

Text book Spin

Negation ¬ !
Conjunction ∧ &&
Disjunction ∨ ||
Implication →, ⊃ −>
Equivalence ↔ <−>

We use mostly the textbook notation,
except for tool-specific slides, input files.
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Semantics of Propositional Logic

Interpretation I
Assigns a truth value to each propositional variable

I : AP → {T ,F}

How to evaluate p → (q → p) in each interpretation Ii?

Valuation Function

valI : Continuation of I on For0

valI : For0 → {T ,F}

valI(true) = T
valI(false) = F
valI(pi ) = I(pi )

(cont’d next page)
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Semantics of Propositional Logic (Cont’d)

Valuation function (Cont’d)

valI(¬φ) =

{
T if valI(φ) = F
F otherwise

valI(φ ∧ ψ) =

{
T if valI(φ) = T and valI(ψ) = T
F otherwise

valI(φ ∨ ψ) =

{
T if valI(φ) = T or valI(ψ) = T
F otherwise

valI(φ→ ψ) =

{
T if valI(φ) = F or valI(ψ) = T
F otherwise

valI(φ↔ ψ) =

{
T if valI(φ) = valI(ψ)
F otherwise
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Valuation Examples

Example

Let AP = {p, q}
p → (q → p)

p q

I1 F F
I2 T F

. . .

How to evaluate p → (q → p) in I2?

valI2( p → (q → p) ) = T iff valI2(p) = F or valI2(q → p) = T
valI2(p) = I2(p) = T
valI2( q → p ) = T iff valI2(q) = F or valI2(p) = T
valI2(q) = I2(q) = F
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Semantic Notions of Propositional Logic

Let φ ∈ For0, Γ ⊆ For0

Definition (Satisfying Interpretation, Consequence Relation)

I satisfies φ (write: I |= φ) iff valI(φ) = T

φ follows from Γ (write: Γ |= φ) iff for all interpretations I:

If I |= ψ for all ψ ∈ Γ, then also I |= φ

Definition (Satisfiability, Validity)

A formula is satisfiable if it is satisfied by some interpretation.
If every interpretation satisfies φ (write: |= φ) then φ is called valid.
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Semantics of Propositional Logic: Examples

Formula (same as before)

p → (q → p)

Is this formula valid?

|= p → (q → p) ?

FMSD: Linear Temporal Logic /GU 170912 12 / 52



Semantics of Propositional Logic: Examples

Formula (same as before)

p → (q → p)

Is this formula valid?

|= p → (q → p) ?

FMSD: Linear Temporal Logic /GU 170912 12 / 52



Semantics of Propositional Logic: Examples

p ∧ ((¬p) ∨ q)

Satisfiable?

4

Satisfying Interpretation? I(p) = T , I(q) = T
Other Satisfying Interpretations? 8

Therefore, not valid!

p ∧ ((¬p) ∨ q) |= q ∨ r

Does it hold? Yes. Why?
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An Exercise in Formalisation

1 byte n;

2 active proctype [2] P() {

3 n = 0;

4 n = n + 1

5 }

Can we characterise the states of P propositionally?

AP : N0,N1,N2, . . . ,N7 8-bit representation of byte

PC03,PC04,PC05,PC13,PC14,PC15 next instruction pointer

Which interpretations do we need to “exclude”?

I The variable n is represented by eight bits, all values possible

I A process cannot be at two positions at the same time

I If neither process 0 nor process 1 are at position 5, then n is zero

I . . .

φP :=

(
((PC03 ∧ ¬PC04 ∧ ¬PC05) ∨ . . .)∧
((¬PC05 ∧ ¬PC15) =⇒ (¬N0 ∧ . . . ∧ ¬N7)) ∧ . . .

)
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Is Propositional Logic Enough?

Can design for a program P a formula ΦP describing all reachable states

For a given property Ψ the consequence relation

Φp |= Ψ

holds when Ψ is true in any possible state reachable in any run of P

But How to Express Properties Involving State Changes?

In any run of a program P

I n will become greater than 0 eventually?

I n changes its value infinitely often

etc.

⇒ Need a more expressive logic: (Linear) Temporal Logic
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I n changes its value infinitely often
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Transition Systems (aka Kripke Structures)

x
s

F F

s ′

T F

s ′′

T T

s ′′′

F T

We assume AP = {p, q}

Notation

name

interp.
x

transition
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Transition Systems (aka Kripke Structures)

x
s

F F

s ′

T F

s ′′

T T

s ′′′

F T

I Each state has its own interpretation I : {p, q} → {T ,F}
I Convention: list interpretation of variables in lexicographic order

I Computations, or runs, are infinite paths through states
I ‘finite’ runs simulated by looping on terminal state

I Prefix of some example runs:
I s s ′s ′′s ′s ′′s ′s ′′s ′′′ . . .
I s s ′s ′′s ′′′s ′′s ′s ′′s ′ . . .
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Formal Verification: Model Checking

Real

World

TL

Promela
Sy
nt
ax

Sy
nt
ax

Transition

SystemSem.

FMSD: Linear Temporal Logic /GU 170912 17 / 52



Transition System of some PROMELA Model

x
s

F F

s ′

T F

s ′′

T T

s ′′′

F T

p=T ; q=p;

q=F
;

p=F ;

p=T
;

Notation

name

interp.
x

statement
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Transition Systems: Formal Definition

Definition (Transition System)

A transition system T = (S ,→,So , L) is composed of a set of states S ,
a transition relation →⊆ S × S , a set ∅ 6= S0 ⊆ S of initial states, and
a labeling L of each state s ∈ S with a propositional interpretation L(s).

Definition (Run of Transition System)

A run of T = (S ,→,So , L) is a sequence of states
σ = s0 s1 . . .
such that s0 ∈ S0 and si → si+1 for all i ≥ 0.

Definition (Trace)

The trace tr(σ) of a run σ = s0 s1 . . . is the sequence
τ = I0 I1 . . .
such that Ii = L(si ).
A trace of T is tr(σ) for any run σ of T .
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Runs and Traces Visually

I Given a run σ = s0 s1 s2 s3 s4 . . .

s0 s1 s2 s3 s4 · · ·

I Each state s of a transition system is labelled, via L(s), with an
interpretation

s0

L(s0)

s1

L(s1)

s2

L(s2)

s3

L(s3)

s4

L(s4)
· · ·

I If we name each interpretations L(si ) as Ii , we have

s0

I0
s1

I1
s2

I2
s3

I3
s4

I4
· · ·

I The trace tr(σ) is: τ = I0 I1 I2 I3 . . .
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Notations: Power Set and Sequences

Assume sets X and Y .

Power Set

2X is the set of all subsets of X (called ‘power set of X ’).

Finite Sequences

Y ∗ is the set of all finite sequences (words) of elements of Y .

Infinite Sequences

Y ω is the set of all infinite sequences (words) of elements of Y .
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Power Sets and Sequences: Example

Given the set of atomic propositions AP = {p, q}.

Power Set

2AP = { {}, {p}, {p}, {p, q} }

Finite Sequences

(2AP)∗: set of all finite sequences of elements of 2AP .
E.g.: {p}{}{p, q}{p} ∈ (2AP)∗

(and infitely many others)

Infinite Sequences

(2AP)ω: set of all infinite sequences of elements of 2AP .
E.g.: {p}{p, q}{p}{}{p}{p, q}{p}{} . . . ∈ (2AP)ω

(and uncountably many others)
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Interpretations as Sets

Interpretations over atomic propositions AP can be represented as
elements of 2AP .

E.g., assume AP = {p, q}
I.e., 2AP = { {}, {p}, {p}, {p, q} }

p q

I1 F F
represented as {}

p q

I2 T F
represented as {p}

p q

I3 F T
represented as {q}

p q

I4 T T
represented as {p, q}
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Runs and Traces revisited

Given states S and atomic propositions AP.

I A run σ = s0 s1 s2 s3 s4 . . . is an element of Sω.

I A trace τ = I0 I1 I2 I3 . . . is an element of of (2AP)ω.

An example of a trace τ = I0 I1 I2 I3 . . . may look like:

τ = {p}{p, q}{p}{} . . .
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Linear Time Properties

Definition (Linear Time Property)

Given a set of atomic propositions AP.
Each subset P of (2AP)ω is a linear time (LT) property over AP.

Intuition:

I Assume a trace property P ⊆ (2AP)ω.

I A trace t fulfils the property P iff t ∈ P.

I A trace t violates the property P iff t 6∈ P.
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Classes of LT Properties

The LT properties can be devided in three classes:

I Safety properties

I Liveness properties

I Properties that are neither safety nor liveness properties
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Safety Properties

Definition (Safety Properties, Bad Prefixes)

An LT property Psafe over AP is called a safety property if for all words
τ ∈ (2AP)ω \ Psafe , there exists a finite prefix τ̂ of τ such that

Psafe ∩
{
τ ′ ∈ (2AP)ω | τ̂ is a finite prefix of τ ′

}
= ∅

Each violating trace τ has a finite, ‘bad prefix’ τ̂ .
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Liveness Properties

Let pref (P) be the set of finite prefixes of elements of P.

Definition (Liveness Properties)

An LT property Plive over AP is called a liveness property whenever
pref (Plive) = (2AP)∗

A liveness property allows every finite prefix.
(It cannot be refuted in finite time.)
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Linear Temporal Logic

An extension of propositional logic that
allows to specify properties of all traces

Syntax

Based on propositional signature and syntax

Extension with three connectives (in this course):

Always If φ is a formula, then so is �φ

Eventually If φ is a formula, then so is ♦φ

Until If φ and ψ are formulas, then so is φUψ

Concrete Syntax

text book Spin

Always � [ ]
Eventually ♦ <>
Until U U
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Linear Temporal Logic Syntax: Examples

Let AP = {p, q} be the set of propositional variables.

I p

I false

I p → q

I ♦p

I �q

I ♦�(p → q)

I (�p)→ ((♦p) ∨ ¬q)

I p U(�q)
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Temporal Logic—Semantics

Valuation of temporal formula relative to trace (infinite sequence of
interpretations)

Definition (Validity Relation)

Validity of temporal formula depends on traces τ = I0 I1 . . .
τ |= p iff I0(p) = T , for p ∈ AP.
τ |= ¬φ iff not τ |= φ (write τ 6|= φ)
τ |= φ ∧ ψ iff τ |= φ and τ |= ψ
τ |= φ ∨ ψ iff τ |= φ or τ |= ψ
τ |= φ→ ψ iff τ 6|= φ or τ |= ψ

Temporal connectives?
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Temporal Logic—Semantics (Cont’d)

Trace τ

I0 I1 · · · Ik−1 Ik · · ·

If τ = I0 I1 . . ., then τ |i denotes the suffix Ii Ii+1 . . . of τ .

Definition (Validity Relation for Temporal Connectives)

Given a trace τ = I0 I1 . . .
τ |= �φ iff τ |k |= φ for all k ≥ 0
τ |= ♦φ iff τ |k |= φ for some k ≥ 0
τ |= φUψ iff τ |k |= ψ for some k ≥ 0, and τ |j |= φ for all 0≤j<k

(if k = 0 then φ needs never hold)
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Safety and Liveness Properties

Safety Properties

I Always-formulas called safety properties:
“something bad never happens”

I Example:
� (¬P in CS ∨ ¬Q in CS)
‘simultaneous visit to the critical sections never happens’

Liveness Properties

I Eventually-formulas called liveness properties:
“something good happens eventually”

I Example:
♦ P in CS

‘P enters its critical section eventually’
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Complex Properties

What does this mean?

τ |= �♦φ

“During trace τ the formula φ becomes true infinitely often”
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Validity of Temporal Logic

Definition (Validity)

φ is valid, write |= φ, iff τ |= φ for all traces τ = I0 I1 . . ..

Representation of Traces

Can represent a set of traces as a sequence of propositional formulas:

I φ0 φ1, . . . represents all traces I0 I1 . . . such that Ii |= φi for i ≥ 0
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Semantics of Temporal Logic: Examples

♦�φ

Valid?

No, there is a trace where it is not valid:
(¬φ¬φ¬φ . . .)

Valid in some trace?
Yes, for example: (¬φφφ . . .)

�φ→ φ (¬�φ)↔ (♦¬φ) ♦φ↔ (true Uφ)

All are valid! (proof is exercise)

I � is reflexive

I � and ♦ are dual connectives

I � and ♦ can be expressed with only using U
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Temporal Logic—Semantics (Cont’d)

Extension of validity of temporal formulas to transition systems:

Definition (Validity Relation)

Given a transition system T = (S ,→,S0, L), a temporal formula φ is
valid in T (write T |= φ) iff τ |= φ for all traces τ of T .
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ω-Languages

Given a finite alphabet (vocabulary) Σ

A word w ∈ Σ∗ is a finite sequence

w = ao . . . an

with ai ∈ Σ, i ∈ {0, . . . , n}

L ⊆ Σ∗ is called a language
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ω-Languages

Given a finite alphabet (vocabulary) Σ

An ω-word w ∈ Σω is an infinite sequence

w = ao . . . ak . . .

with ai ∈ Σ, i ∈ N

Lω ⊆ Σω is called an ω-language
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Büchi Automaton

Definition (Büchi Automaton)

A (non-deterministic) Büchi automaton over an alphabet Σ consists of a

I finite, non-empty set of locations Q

I a transition relation δ ⊆ Q × Σ× Q

I a non-empty set of initial locations Q0 ⊆ Q

I a set of accepting locations F = {f1, . . . , fn} ⊆ Q

Example

Σ = {a, b},Q = {q1, q2, q3}, I = {q1},F = {q2}

q1start q2 q3

a, b

a
b

a
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Büchi Automaton—Executions and Accepted Words

Definition (Execution)

Let B = (Q, δ,Q0,F ) be a Büchi automaton over alphabet Σ.
An execution of B is a pair (w , v), with

I w = ao . . . ak . . . ∈ Σω

I v = qo . . . qk . . . ∈ Qω

where q0 ∈ Q0, and (qi , ai , qi+1) ∈ δ, for all i ∈ N

Definition (Accepted Word)

A Büchi automaton B accepts a word w ∈ Σω, if there exists an
execution (w , v) of B where some accepting location f ∈ F appears
infinitely often in v .
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Büchi Automaton—Language

Let B = (Q, δ,Q0,F ) be a Büchi automaton, then

Lω(B) = {w ∈ Σω| B accepts w }

denotes the ω-language recognised by B.

An ω-language for which an accepting Büchi automaton exists
is called ω-regular language.
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Example, ω-Regular Expression

Which language is accepted by the following Büchi automaton?

q1start q2 q3

a, b

a
b

a

Solution: (a + b)∗(ab)ω [NB: (ab)ω = a(ba)ω]

ω-regular expressions similar to standard regular expression

ab a followed by b

a + b a or b

a∗ arbitrarily, but finitely often a

new: aω infinitely often a
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Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language Lω(B) of a Büchi
automaton B is empty.

Theorem (Closure properties)

The set of ω-regular languages is closed with respect to intersection,
union and complement:

I if L1,L2 are ω-regular then L1 ∩ L2 and L1 ∪ L2 are ω-regular

I L is ω-regular then Σω\L is ω-regular

But in contrast to regular finite automata:

Non-deterministic Büchi automata are strictly more expressive than
deterministic ones.
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Büchi Automata—More Examples

Language:

a(a + ba)ω

q0 q1

a

a

b

Language:

(a∗ba)ω

q0 q1a

b

a
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Linear Temporal Logic and Büchi Automata

LTL and Büchi Automata are connected

Recall

Definition (Validity Relation)

Given a transition system T = (S ,→,S0, L), a temporal formula φ is
valid in T (write T |= φ) iff τ |= φ for all traces τ of T .

A trace of the transition system is an infinite sequence of interpretations.

Intended Connection

Given an LTL formula φ:

Construct a Büchi automaton accepting exactly those traces (infinite
sequences of interpretations) that satisfy φ.
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Encoding an LTL Formula as a Büchi Automaton

AP set of propositional variables, e.g., AP = {r , s}

Suitable alphabet Σ for Büchi automaton?

A state transition of Büchi automaton must represent an interpretation

Choose Σ to be the set of all interpretations over AP, encoded as 2AP .

(Recall slide ‘Interpretations as Sets’)

Example

Σ =
{
∅, {r}, {s}, {r , s}

}
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Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula r over AP = {r , s})
A Büchi automaton B accepting exactly those runs σ satisfying r

start
{r},{r , s}

Σ

In the first state s0 (of σ) at least r must hold, the rest is arbitrary

Example (Büchi automaton for formula �r over AP = {r , s})

start

Σr := {I |I ∈ Σ, r ∈ I}

In all states s (of σ) at least r must hold
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Büchi Automaton for LTL Formula By Example
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Literature for this Lecture

Ben-Ari Section 5.2.1
(only syntax of LTL)

Baier and Katoen Principles of Model Checking,
May 2008, The MIT Press,
ISBN: 0-262-02649-X
(for in depth theory of model checking)
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