
Formal Methods for Software Development
Temporal Model Checking (part 2)

+ First-Order Logic

Wolfgang Ahrendt

22th September 2017

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 1 / 67

Part I

Finishing Temporal Model Checking

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 2 / 67

Model Checking

Check whether a formula is valid in all runs of a transition system.

Given a transition system T (e.g., derived from a Promela program).

Verification task: is the LTL formula φ satisfied in all traces of T , i.e.,

T |= φ ?

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 3 / 67

LTL Model Checking—Overview

T |= φ ?

1. Construct generalised Büchi automaton GB¬φ for negation of φ

2. Construct an equivalent normal Büchi automaton B¬φ, i.e.,

Lω(B¬φ) = Lω(GB¬φ)

3. Construct product T ⊗ B¬φ
4. Analyse whether T ⊗ B¬φ has a

path π looping through an ‘accepting node’

5. If such a π is found, then

T 6|= φ
and

σπ is a counter example.

If no such π is found, then

T |= φ

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 4 / 67

What Remains?

last lecture

3.–5. product of transition system and Büchi automaton
(construction and analysis)

this lecture

2. generalised Büchi automata and their normalisation
1. translating LTL into generalised Büchi automata

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 5 / 67

Generalised Büchi Automata GB
and Translation to

(normal) Büchi Automata B

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 6 / 67

Generalised Büchi Automata

A generalised Büchi automaton is defined as:

GB = (Q, δ,Q0,F)

Q, δ,Q0 as for standard Büchi automata

F = {F1, . . . ,Fk} is a set of sets of accepting locations
(Fi = {fi1, . . . , fimi

} ⊆ Q)

Definition (Acceptance for generalised Büchi automata)

A generalised Büchi automaton accepts an ω-word w ∈ Σω iff
for every i ∈ {1, . . . , k} at least one q ∈ Fi is visited infinitely often.

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 7 / 67

Generalised vs. Normal Büchi Automata: Example

q0 q1start q2

a

b c

b

GB with F = {
F1︷︸︸︷
{q0},

F2︷︸︸︷
{q2}} different from normal B with F = {q0, q2}

Are the following ω-words accepted?

ω-word B GB
(ab)ω 4 8

(abcb)ω 4 4

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 8 / 67

Translate Generalised to Normal Büchi Automata

GB with F = {
F1︷︸︸︷
{q0},

F2︷︸︸︷
{q2}}:

q0 q1start q2

a

b c

b

Construct B (different from last slide) which accepts the same words:

L(B) = L(GB)

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 9 / 67

Translate Generalised to Normal Büchi Automata

Construct B for GB with F = {
F1︷︸︸︷
{q0},

F2︷︸︸︷
{q2}}:

〈q0, 1〉 〈q1, 1〉start 〈q2, 1〉

〈q0, 2〉 〈q1, 2〉start 〈q1, 2〉 〈q2, 2〉〈q2, 2〉

a

b
b

c

b

a

b c

b
b

One clone for each Fi ∈ F Every transition from “F1” is
redirected to “clone 2” Every transition from “F2” is redirected to

“clone 1” Keep only initial and final locations of “clone 1”
resulting normal Büchi automaton B with L(B) = L(GB)

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 10 / 67

Translate Generalised to Normal Büchi Automata
(formal)

Given generalised Büchi automaton
GB = (Q, δ,Q0,F) with F = {F1, . . . ,Fk}

Equivalent normal Büchi automaton
B = (Q ′, δ′,Q ′0,F

′) with

I Q ′ = Q × {1, ..., k}

I δ′(〈q, i〉, σ) =

{
{〈q′, i〉 | q′ ∈ δ(q, σ)} if q 6∈ Fi
{〈q′, (i mod k) + 1〉 | q′ ∈ δ(q, σ)} if q ∈ Fi

I Q ′0 = {〈q, 1〉|q ∈ Q0}
I F ′ = {〈q, 1〉|q ∈ F1}

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 11 / 67

Construction of a
Generalised Büchi Automaton

GBφ
for an

LTL-Formula φ

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 12 / 67

Focus on �-free and ♦-free LTL

I Following construction assumes formulas without � and ♦.

I Only temporal modality is U .

I � can be removed using

�φ ≡ ¬♦¬φ

I ♦ can be removed using

♦φ ≡ true Uφ

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 13 / 67

Theory and Example at Once

We introduce the general consruction togher with example.

Task:

construct

GBφ

for

φ ≡ r Us

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 14 / 67

Fischer-Ladner Closure

Fischer-Ladner closure of an LTL-formula φ

FL(φ) = {ϕ | ϕ is subformula or negated subformula of φ}

(¬¬ϕ is identified with ϕ)

Example

FL(r Us) = {r ,¬r , s,¬s, r Us,¬(r Us)}

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 15 / 67

GBφ-Construction: Locations

Locations of GBφ are Q ⊆ 2FL(φ) where each q ∈ Q satisfies:

Consistent, Total I ψ ∈ FL(φ) then exactly one of ψ and ¬ψ in q

Downward Closed I ψ1 ∧ ψ2 ∈ q then ψ1 ∈ q and ψ2 ∈ q
I ψ1 ∨ ψ2 ∈ q then ψ1 ∈ q or ψ2 ∈ q
I ψ1 → ψ2 ∈ q then ψ1 6∈ q or ψ2 ∈ q

Until Consistent I ψ2 ∈ q then ψ1 Uψ2 ∈ q
I ψ1 Uψ2 ∈ q and ψ2 6∈ q then ψ1 ∈ q

FL(r Us) = {r ,¬r , s,¬s, r Us,¬(r Us)}

∈ Q

{r Us,¬r , s} 4

{r Us,¬r ,¬s} 8

{¬(r Us), r , s} 8

{¬(r Us), r ,¬s} 4

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 16 / 67

GBφ-Construction: Transitions

{r Us,¬r , s}︸ ︷︷ ︸
q1

, {r Us, r ,¬s}︸ ︷︷ ︸
q2

, {r Us, r , s}︸ ︷︷ ︸
q3

, {¬(r Us), r ,¬s}︸ ︷︷ ︸
q4

, {¬(r Us),¬r ,¬s}︸ ︷︷ ︸
q5

q1 q2 q3q1 q2 q3

q4

q5

q1 q2 q3

q4

q5

{s} {s}

{s}

{s}
{s}

{r}

{r}

{r}

Transitions (q, α, q′) ∈ δφ:

α = q ∩ AP

AP set of propositional variables
outgoing edges of q1 labeled {s},
of q2 labeled {r}, etc.

1. If ψ1 Uψ2 ∈ q and ψ2 6∈ q
then ψ1 Uψ2 ∈ q′

2. If ψ1 Uψ2 ∈ q′ and ψ1 ∈ q
then ψ1 Uψ2 ∈ q

Initial locations

q ∈ Iφ iff φ ∈ q

Accepting locations

F = {F1, . . . ,Fn}
I One Fi for each
ψi1 Uψi2 ∈ FL(φ);
here: F = {F1}

I Fi set of locations that
do not contain ψi1 Uψi2 or
that contain ψi2

here: F1 = {q1, q3, q4, q5}

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 17 / 67

Remarks on Generalized Büchi Automata

I Construction always gives exponential number of states in |φ|
I Satisfiability checking of LTL is PSPACE-complete
I There exist (more complex) constructions that minimize number of

required states
I One of these is used in Spin, which moreover computes the states

lazily

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 18 / 67

Part II

Starting First-order Logic

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 19 / 67

Motivation for Introducing First-Order Logic

1) We specify Java programs with Java Modeling Language (JML)

JML combines

I Java expressions

I First-Order Logic (FOL)

2) We verify Java programs using Dynamic Logic

Dynamic Logic combines

I First-Order Logic (FOL)

I Java programs

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 20 / 67

FOL: Language and Calculus

We introduce:

I FOL as a language

I Sequent calculus for proving FOL formulas

I KeY system as propositional, and first-order, prover (for now)

I Formal semantics

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 21 / 67

First-Order Logic: Signature

Signature

A first-order signature Σ consists of

I a set TΣ of types

I a set FΣ of function symbols

I a set PΣ of predicate symbols

I a typing αΣ

Intuitively, the typing αΣ determines
I for each function and predicate symbol:

I its arity, i.e., number of arguments
I its argument types

I for each function symbol its result type.

Formally:

I αΣ(p) ∈ TΣ
∗ for all p ∈ PΣ (arity of p is |αΣ(p)|)

I αΣ(f) ∈ TΣ
∗ × TΣ for all f ∈ FΣ (arity of f is |αΣ(f)| − 1)

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 22 / 67

Example Signature Σ1 + Constants

TΣ1 = {int},
FΣ1 = {+, -} ∪ {..., -2, -1, 0, 1, 2, ...},
PΣ1 = {<}

αΣ1(<) = (int,int)
αΣ1(+) = αΣ1(-) = (int,int,int)
αΣ1(0) = αΣ1(1) = αΣ1(-1) = ... = (int)

Constant Symbols

A function symbol f with |αΣ1(f)| = 1 (i.e., with arity 0)
is called constant symbol.

Here, the constant symbols are: ..., -2, -1, 0, 1, 2, ...

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 23 / 67

Syntax of First-Order Logic: Signature Cont’d

Type declaration of signature symbols

I Write τ x ; to declare variable x of type τ

I Write p(τ1, . . . , τr); for α(p) = (τ1, . . . , τr)

I Write τ f (τ1, . . . , τr); for α(f) = (τ1, . . . , τr , τ)

r = 0 is allowed, then write f instead of f ().

Example

Variables integerArray a; int i;

Predicate Symbols isEmpty(List); alertOn;

Function Symbols int arrayLookup(int); Object o;

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 24 / 67

Example Signature Σ1 + Notation

Typing of Signature:

αΣ1(<) = (int,int)
αΣ1(+) = αΣ1(-) = (int,int,int)
αΣ1(0) = αΣ1(1) = αΣ1(-1) = ... = (int)

can alternatively be written as:

<(int,int);

int +(int,int);

int 0; int 1; int -1; ...

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 25 / 67

First-Order Terms

We assume a set V of variables (V ∩ (FΣ ∪ PΣ) = ∅).
Each v ∈ V has a unique type αΣ(v) ∈ TΣ.

Terms are defined recursively:

Terms

A first-order term of type τ ∈ TΣ

I is either a variable of type τ , or

I has the form f (t1, . . . , tn),
where f ∈ FΣ has result type τ , and each ti is term of the correct
type, following the typing αΣ of f .

If f is a constant symbol, the term is written f , instead of f ().

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 26 / 67

Terms over Signature Σ1

Example terms over Σ1:
(assume variables int v1; int v2;)

I -7

I +(-2, 99)

I -(7, 8)

I +(-(7, 8), 1)

I +(-(v1, 8), v2)

Our variant of FOL allows infix notation for common functions:

I -2 + 99

I 7 - 8

I (7 - 8) + 1

I (v1 - 8) + v2

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 27 / 67

Atomic Formulas

Atomic Formulas

Given a signature Σ.
An atomic formula has either of the forms

I true

I false

I t1 = t2 (“equality”),
where t1 and t2 are first-order terms of the same type.

I p(t1, . . . , tn) (“predicate”),
where p ∈ PΣ, and each ti is term of the correct type,
following the typing αΣ of p.

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 28 / 67

Atomic Formulas over Signature Σ1

Example formulas over Σ1:
(assume variable int v ;)

I 7 = 8

I <(7, 8)

I <(-2 - v , 99)

I <(v , v + 1)

Our variant of FOL allows infix notation for common predicates:

I 7 < 8

I -2 - v < 99

I v < v + 1

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 29 / 67

First-Order Formulas

Formulas

I each atomic formula is a formula

I with φ and ψ formulas, x a variable, and τ a type,
the following are also formulas:

I ¬φ (“not φ”)
I φ ∧ ψ (“φ and ψ”)
I φ ∨ ψ (“φ or ψ”)
I φ→ ψ (“φ implies ψ”)
I φ↔ ψ (“φ is equivalent to ψ”)
I ∀ τ x ; φ (“for all x of type τ holds φ”)
I ∃ τ x ; φ (“there exists an x of type τ such that φ”)

In ∀ τ x ; φ and ∃ τ x ; φ the variable x is ‘bound’ (i.e., ‘not free’).

Formulas with no free variable are ‘closed’.

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 30 / 67

First-order Formulas: Examples

(signatures/types left out here)

Example (There are at least two elements)

∃x , y ;¬(x = y)

Example (Strict partial order)

Irreflexivity ∀x ;¬(x < x)
Asymmetry ∀x ; ∀y ; (x < y → ¬(y < x))
Transitivity ∀x ; ∀y ;∀z ;

(x < y ∧ y < z → x < z)

(Is any of the three formulas redundant?)

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 31 / 67

Semantics (briefly here, more thorough later)

Domain

A domain D is a set of elements which are (potentially) the meaning of
terms and variables.

Interpretation

An interpretation I (over D) assigns meaning to the symbols in FΣ ∪ PΣ

(assigning functions to function symbols, relations to predicate symbols).

Valuation

In a given D and I, a closed formula evaluates to either T or F .

Validity

A closed formula is valid if it evaluates to T in all D and I.

In the context of specification/verification of programs:
each (D, I) is called a ‘state’.
FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 32 / 67

Useful Valid Formulas

Let φ and ψ be arbitrary, closed formulas (whether valid or not).

The following formulas are valid:

I ¬(φ ∧ ψ)↔ ¬φ ∨ ¬ψ
I ¬(φ ∨ ψ)↔ ¬φ ∧ ¬ψ
I (true ∧ φ)↔ φ

I (false ∨ φ)↔ φ

I true ∨ φ
I ¬(false ∧ φ)

I (φ→ ψ)↔ (¬φ ∨ ψ)

I φ→ true

I false→ φ

I (true→ φ)↔ φ

I (φ→ false)↔ ¬φ

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 33 / 67

Useful Valid Formulas

Assume that x is the only variable which may appear freely in φ or ψ.

The following formulas are valid:

I ¬(∃ τ x ; φ)↔ ∀ τ x ; ¬φ
I ¬(∀ τ x ; φ)↔ ∃ τ x ; ¬φ
I (∀ τ x ; (φ ∧ ψ))↔ (∀ τ x ; φ) ∧ (∀ τ x ; ψ)

I (∃ τ x ; (φ ∨ ψ))↔ (∃ τ x ; φ) ∨ (∃ τ x ; ψ)

Are the following formulas also valid?

I (∀ τ x ; (φ ∨ ψ))↔ (∀ τ x ; φ) ∨ (∀ τ x ; ψ)

I (∃ τ x ; (φ ∧ ψ))↔ (∃ τ x ; φ) ∧ (∃ τ x ; ψ)

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 34 / 67

Remark on Concrete Syntax

Text book Spin KeY

Negation ¬ ! !
Conjunction ∧ && &
Disjunction ∨ || |
Implication →, ⊃ −> −>
Equivalence ↔ <−> <−>
Universal Quantifier ∀ x ; φ n/a \forall τ x ; φ
Existential Quantifier ∃ x ; φ n/a \exists τ x ; φ
Value equality = == =

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 35 / 67

Motivation for a Sequent Calculus

How to show a formula valid in propositional logic?
→ use a semantic truth table.

How about FOL? Formula: isEven(x) ∨ isOdd(x)

x isEven(x) isOdd(x) isEven(x) ∨ isOdd(x)

1 F T T
2 T F T
.

Checking validity via semantics does not work.

Instead...

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 36 / 67

Reasoning by Syntactic Transformation

Prove validity of φ by syntactic transformation of φ

Logic Calculus: Sequent Calculus based on notion of sequent:

ψ1, . . . , ψm︸ ︷︷ ︸
antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
succedent

has same meaning as

(ψ1 ∧ · · · ∧ ψm) → (φ1 ∨ · · · ∨ φn)

which has (for closed formulas ψi , φi) same meaning as

{ψ1, . . . , ψm} |= φ1 ∨ · · · ∨ φn

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 37 / 67

Notation for Sequents

ψ1, . . . , ψm =⇒ φ1, . . . , φn

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

φ, ψ, . . . match formulas, Γ,∆, . . . match sets of formulas
Characterize infinitely many sequents with single schematic sequent, e.g.,

Γ =⇒ φ ∧ ψ, ∆

matches any sequent with occurrence of conjunction in succedent

Here, we call φ ∧ ψ main formula and Γ,∆ side formulas of sequent

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 38 / 67

Sequent Calculus Rules

Write syntactic transformation schema for sequents that reflects
semantics of connectives

RuleName

premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
conclusion

Meaning: For proving the conclusion, it suffices to prove all premisses.

Example

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

Admissible to have no premisses (iff conclusion is valid, e.g., axiom)

A rule is sound (correct) iff the validity of its premisses implies the
validity of its conclusion.
FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 39 / 67

‘Propositional’ Sequent Calculus Rules

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 40 / 67

Sequent Calculus Proofs

Goal to prove: G = ψ1, . . . , ψm =⇒ φ1, . . . , φn

I find rule R whose conclusion matches G
I instantiate R such that its conclusion is identical to G
I apply that instantiation to all premisses of R, resulting in new goals
G1, . . . , Gr

I recursively find proofs for G1, . . . , Gr
I tree structure with goal as root

I close proof branch when rule without premiss encountered

Goal-directed proof search

I Paper proofs: root at bottom, grow upwards

I KeY tool proofs: root at top, grow downwards

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 41 / 67

A Simple Proof

Close
∗

p =⇒ p, q

∗
p, q =⇒ q

Close

p, (p → q) =⇒ q

p ∧ (p → q) =⇒ q

=⇒ (p ∧ (p → q))→ q

A proof is closed iff all its branches are closed

Demo
prop.key

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 42 / 67

Proving Validity of First-Order Formulas

Proving a universally quantified formula

Claim: ∀ τ x ; φ is true

How is such a claim proved in mathematics?

All even numbers are divisible by 2 ∀ int x ; (even(x)→ divByTwo(x))

Let c be an arbitrary number Declare “unused” constant int c

The even number c is divisible by 2 prove even(c)→ divByTwo(c)

Sequent rule ∀-right

forallRight
Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀ τ x ; φ,∆

I [x/c]φ is result of replacing each occurrence of x in φ with c

I c new constant of type τ

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 43 / 67

Proving Validity of First-Order Formulas Cont’d

Proving an existentially quantified formula

Claim: ∃ τ x ; φ is true

How is such a claim proved in mathematics?

There is at least one prime number ∃ int x ; prime(x)

Provide any “witness”, say, 7 Use variable-free term int 7

7 is a prime number prime(7)

Sequent rule ∃-right

existsRight
Γ =⇒ [x/t]φ, ∃ τ x ; φ,∆

Γ =⇒ ∃ τ x ; φ,∆

I t any variable-free term of type τ

I We might need other instances besides t! Keep ∃ τ x ; φ

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 44 / 67

Proving Validity of First-Order Formulas Cont’d

Using a universally quantified formula

We assume ∀ τ x ; φ is true

How is such a fact used in a mathematical proof?

We know that all primes are odd ∀ int x ; (prime(x)→ odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd prime(17)→ odd(17)

Sequent rule ∀-left

forallLeft
Γ, ∀ τ x ; φ, [x/t]φ =⇒ ∆

Γ, ∀ τ x ; φ =⇒ ∆

I t any variable-free term of type τ

I We might need other instances besides t! Keep ∀ τ x ; φ

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 45 / 67

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

We assume ∃ τ x ; φ is true

How is such a fact used in a mathematical proof?

We know such an element exists. Let’s give it a new name for future
reference.

Sequent rule ∃-left

existsLeft
Γ, [x/c]φ =⇒ ∆

Γ,∃ τ x ; φ =⇒ ∆

I c new constant of type τ

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 46 / 67

Proving Validity of First-Order Formulas Cont’d

Using an equation between terms

We assume t = t ′ is true

How is such a fact used in a mathematical proof?

x = y−1 =⇒ 1 = x+1/y

Use x = y−1 to modify x+1/y :
replace x in succedent with right-hand side of antecedent

x = y−1 =⇒ 1 = y−1+1/y

Sequent rule =-left

applyEqL
Γ, t = t ′, [t/t ′]φ =⇒ ∆

Γ, t = t ′, φ =⇒ ∆
applyEqR

Γ, t = t ′ =⇒ [t/t ′]φ,∆

Γ, t = t ′ =⇒ φ,∆

I Always replace left- with right-hand side (use eqSymm if necessary)

I t,t ′ variable-free terms of the same type

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 47 / 67

Proving Validity of First-Order Formulas Cont’d

Closing a subgoal in a proof

I We derived a sequent that is obviously valid

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

I We derived an equation that is obviously valid

eqClose
Γ =⇒ t = t,∆

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 48 / 67

Sequent Calculus for FOL at One Glance

left side, antecedent right side, succedent

∀
Γ,∀ τ x ; φ, [x/t ′]φ =⇒ ∆

Γ, ∀ τ x ; φ =⇒ ∆

Γ =⇒ [x/c]φ,∆

Γ =⇒ ∀ τ x ; φ,∆

∃
Γ, [x/c]φ =⇒ ∆

Γ, ∃ τ x ; φ =⇒ ∆

Γ =⇒ [x/t ′]φ, ∃ τ x ; φ,∆

Γ =⇒ ∃ τ x ; φ,∆

=
Γ, t = t ′ =⇒ [t/t ′]φ,∆

Γ, t = t ′ =⇒ φ,∆ Γ =⇒ t = t,∆
(+ application rule on left side)

I [t/t ′]φ is result of replacing each occurrence of t in φ with t ′

I t,t ′ variable-free terms of type τ

I c new constant of type τ (occurs not on current proof branch)

I Equations can be reversed by commutativity

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 49 / 67

Recap: ‘Propositional’ Sequent Calculus Rules

main left side (antecedent) right side (succedent)

not
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

and
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

or
Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆

imp
Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ→ ψ =⇒ ∆

Γ, φ =⇒ ψ,∆

Γ =⇒ φ→ ψ,∆

close
Γ, φ =⇒ φ,∆

true
Γ =⇒ true,∆

false
Γ, false =⇒ ∆

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 50 / 67

Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)

∗
p(c , d), ∀ y ; p(c , y) =⇒ p(c , d), ∃ x ; p(x , d)

p(c , d), ∀ y ; p(c , y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c, y) =⇒ ∃ x ; p(x , d)

∀ y ; p(c , y) =⇒ ∀ y ; ∃ x ; p(x , y)

∃ x ; ∀ y ; p(x , y) =⇒ ∀ y ; ∃ x ; p(x , y)

Untyped logic: let static type of x and y be >
∃-left: substitute new constant c of type > for x
∀-right: substitute new constant d of type > for y

∀-left: free to substitute any term of type > for y , choose d
∃-right: free to substitute any term of type > for x , choose c

Close
Demo

relSimple.key
FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 51 / 67

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

Let x , y denote integer constants, both are not zero. We know further
that x divides y .
Show: (y/x) ∗ x = y (′/′ is division on integers, i.e., the equation is not
always true, e.g. x = 2, y = 1)
Proof: We know x divides y , i.e. there exists a k such that y = k ∗ x .
Let now c denote such a k. Hence we can replace y by c ∗ x on the
right side. . . .

∗
...

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ ((c ∗ x)/x) ∗ x = y

¬(x = 0),¬(y = 0), y = c ∗ x =⇒ (y/x) ∗ x = y

¬(x = 0),¬(y = 0),∃ int k ; y = k ∗ x =⇒ (y/x) ∗ x = y

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 52 / 67

Features of the KeY Theorem Prover

Demo
rel.key, twoInstances.key

Feature List

I Can work on multiple proofs simultaneously (task list)

I Point-and-click navigation within proof

I Undo proof steps, prune proof trees

I Pop-up menu with proof rules applicable in pointer focus

I Preview of rule effect as tool tip

I Quantifier instantiation and equality rules by drag-and-drop

I Possible to hide (and unhide) parts of a sequent

I Saving and loading of proofs

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 53 / 67

Literature for this Lecture

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt,
M. Ulbrich, editors.
Deductive Software Verification - The KeY Book
Vol 10001 of LNCS, Springer, 2016
(E-book at link.springer.com)

I W. Ahrendt, S. Grebing, Using the KeY Prover
Chapter 15 in [KeYbook]

further reading:

I P.H. Schmitt, First-Order Logic,
Chapter 2 in [KeYbook]

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 54 / 67

link.springer.com

Part III

First-Order Semantics

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 55 / 67

First-Order Semantics

From propositional to first-order semantics

I In prop. logic, an interpretation of variables with {T ,F} sufficed
I In first-order logic we must assign meaning to:

I function symbols
I predicate symbols
I variables bound in quantifiers

I Respect typing: int i, List l must denote different items

What we need (to interpret a first-order formula)

1. A typed domain of items

2. A mapping from function symbols to functions on items

3. A mapping from predicate symbols to relation on items

4. A mapping from variables to items

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 56 / 67

First-Order Domains

1. A typed domain of items:

Definition (Typed Domain)

A non-empty set D of items is a domain.
A typing of D wrt. signature Σ is a mapping δ : D → TΣ

We require from D and δ that no type is empty:
for each τ ∈ TΣ, there is a d ∈ D with δ(d) = τ

I If δ(d) = τ , we say d has type τ .

I Dτ = {d ∈ D | δ(d) = τ} is called subdomain of type τ .

I It follows that Dτ 6= ∅ for each τ ∈ TΣ.

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 57 / 67

First-Order States

2. A mapping from function symbol to functions on items

3. A mapping from predicate symbol to relation on items

Definition (Interpretation, First-Order State)

Let D be a domain with typing δ.

Let I be a mapping, called interpretation, from function and predicate
symbols to functions and relations on items, respectively, such that

I(f) : Dτ1 × · · · × Dτr → Dτ when αΣ(f) = (τ1, . . . , τr , τ)
I(p) ⊆ Dτ1 × · · · × Dτr when αΣ(p) = (τ1, . . . , τr)

Then S = (D, δ, I) is a first-order state.

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 58 / 67

First-Order States Cont’d

Example

Signature: int i; short j; int f(int); Object obj; <(int,int);

D = {17, 2, o} where all numbers are short

I(i) = 17
I(j) = 17
I(obj) = o

Dint I(f)

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) F
(2, 17) T
(17, 2) F

(17, 17) F

One of uncountably many possible first-order states!

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 59 / 67

Semantics of Equality

Definition

Interpretation is fixed as I(=) = {(d , d) | d ∈ D}

Exercise: write down the predicate table for example domain

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 60 / 67

Signature Symbols vs. Domain Elements

I Domain elements different from the terms representing them

I First-order formulas and terms have no access to domain

Example

Signature: Object obj1, obj2;

Domain: D = {o}

In this state, necessarily I(obj1) = I(obj2) = o

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 61 / 67

Variable Assignments

4. A mapping from variables to items

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements.
It respects the variable type, i.e., if x has type τ then β(x) ∈ Dτ

Definition (Modified Variable Assignment)

Let y be variable of type τ , β variable assignment, d ∈ Dτ :

βdy (x) :=

{
β(x) x 6= y
d x = y

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 62 / 67

Semantic Evaluation of Terms

Given a first-order state S and a variable assignment β
it is possible to evaluate first-order terms under S and β

Definition (Valuation of Terms)

valS,β : Term→ D such that valS,β(t) ∈ Dτ for t ∈ Termτ :

I valS,β(x) = β(x)

I valS,β(f (t1, . . . , tr)) = I(f)(valS,β(t1), . . . , valS,β(tr))

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 63 / 67

Semantic Evaluation of Terms Cont’d

Example

Signature: int i; short j; int f(int);

D = {17, 2, o} where all numbers are short
Variables: Object obj; int x;

I(i) = 17
I(j) = 17

Dint I(f)

2 17
17 2

Var β

obj o
x 17

I valS,β(f(f(i))) ?

I valS,β(x) ?

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 64 / 67

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)

valS,β(φ) for φ ∈ For

I valS,β(p(t1, . . . , tr)) = T iff (valS,β(t1), . . . , valS,β(tr)) ∈ I(p)

I valS,β(φ ∧ ψ) = T iff valS,β(φ) = T and valS,β(ψ) = T

I ¬,∨,→,↔ as in propositional logic

I valS,β(∀ τ x ; φ) = T iff valS,βd
x

(φ) = T for all d ∈ Dτ

I valS,β(∃ τ x ; φ) = T iff valS,βd
x

(φ) = T for at least one d ∈ Dτ

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 65 / 67

Semantic Evaluation of Formulas Cont’d

Example

Signature: short j; int f(int); Object obj; <(int,int);

D = {17, 2, o} where all numbers are short

I(j) = 17
I(obj) = o

Dint I(f)

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) F
(2, 17) T
(17, 2) F

(17, 17) F

I valS,β(f (j) < j) ?

I valS,β(∃ int x ; f (x) = x) ?

I valS,β(∀ Object o1; ∀ Object o2; o1 = o2) ?

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 66 / 67

Semantic Notions

Definition (Satisfiability, Truth, Validity)

valS,β(φ) = T (φ is satisfiable)
S |= φ iff for all β : valS,β(φ) = T (φ is true in S)
|= φ iff for all S : S |= φ (φ is valid)

Closed formulas that are satisfiable are also true: one top-level notion

Example

I f (j) < j is true in S
I ∃ int x ; i = x is valid

I ∃ int x ; ¬(x = x) is not satisfiable

FMSD: Temporal Model Checking (part 2) + First-Order Logic 170922 67 / 67

	Finishing Temporal Model Checking
	Model Checking Overview
	GBA to BA
	LTL to GBA
	First-order Logic

	Starting First-order Logic
	FO Signatures
	FO Terms
	FO Formulas
	Interpretations, Validity
	Useful Validities
	Sequent Calculus
	KeY Theorem Prover

	First-Order Semantics
	Domain
	State
	Variable Assignment
	Term Valuation
	Formula Valuation
	Semantic Notions

