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Finishing Temporal Model Checking

FMSD: Temporal Model Checking (part 2) + First-Order Logic CHALMERS 170922 2/67



Model Checking

Check whether a formula is valid in all runs of a transition system.
Given a transition system 7 (e.g., derived from a PROMELA program).

Verification task: is the LTL formula ¢ satisfied in all traces of T, i.e.,

TeE¢ ?
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LTL Model Checking—Overview

TE® ?

1. Construct generalised Biichi automaton G5 for negation of ¢
2. Construct an equivalent normal Biichi automaton B, i.e.,
L2(B-g) = LY(GB-¢)
3. Construct product 7 © B4
4. Analyse whether T ® B- has a
path 7 looping through an ‘accepting node’
5. If such a 7 is found, then

TF¢

and
ox is a counter example.

If no such 7 is found, then

TE®
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What Remains?

last lecture
3.-5. product of transition system and Biichi automaton
(construction and analysis)
this lecture

2. generalised Biuichi automata and their normalisation
1. translating LTL into generalised Biichi automata
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Generalised Buichi Automata GBB
and Translation to
(normal) Biichi Automata B
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Generalised Buchi Automata

A generalised Biichi automaton is defined as:

GB = (Q,6, Qo, F)
Q, d, Qo as for standard Biichi automata

F ={F1,...,Fx} is a set of sets of accepting locations
(Fi ={f1,...,fim} C Q)

Definition (Acceptance for generalised Biichi automata)

A generalised Biichi automaton accepts an w-word w € ¥ iff
for every i € {1,..., k} at least one g € F; is visited infinitely often.
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Generalised vs. Normal Biichi Automata: Example

a b
b c

S
GB with F = {{qo},{q2}} different from normal B with F = {qo, g>}

Are the following w-words accepted?

w-word ‘ B ‘ GgB
(ab)~ b 4
(abcb)¥
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Translate Generalised to Normal Biuichi Automata

AR
GB with 7 = {{qo}, {q2}}:

a b
b c

Construct B (different from last slide) which accepts the same words:

L(B) = L(GB)
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Translate Generalised to Normal Biichi Automata
F1 F
N AN
Construct B for GB with F = {{qo},{q2}}:

a b

b C




Translate Generalised to Normal Biuichi Automata

(formal)

Given generalised Blichi automaton

gB:(Q757Q07~F) Withf:{Flw--aFk}

Equivalent normal Biichi automaton
B=(Q,d, Q,F") with

» Q' =Q x{1,...,k}

ooy d i) d €d(q,0)} if g & F;
> ol i0) = { {{q(imod k) +1) | ¢ € 8(a,0)} ifq € F

> @ =1{(q,1)lg € Qo}
» F'={(q,1)|qg € F1}
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Construction of a
Generalised Buchi Automaton
GB,
for an

LTL-Formula ¢
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Focus on U-free and O-free LTL

» Following construction assumes formulas without [ and ¢.
» Only temporal modality is U.

» [J can be removed using
D(b = —|<>—\¢
» { can be removed using

O0¢p = truelo
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Theory and Example at Once

We introduce the general consruction togher with example.
Task:
construct
GgB
for

¢ = rlUs
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Fischer-Ladner Closure

Fischer-Ladner closure of an LTL-formula ¢
FL(¢) = {¢ | ¢ is subformula or negated subformula of ¢}

(——p is identified with ¢)

Example
FL(ris) = {r,—r,s,—s,rUs,—(rUs)} J
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GBs-Construction: Locations

Locations of GB,, are @ C 2FL(?) where each g € Q satisfies:

Consistent, Total » 1) € FL(¢) then exactly one of ¢ and =) in ¢

Downward Closed » 1 A» € g then ¢; € g and Yp € g
> Y1 V2 € gthen ¢y € gor s €q
> 1~ Yo Eqthenyy € qgoryp€q

Until Consistent » 5 € g then Y1 UY» € g
> P1UY2 € g and 2 € g then Y1 € g

FL(rits) = {r,—r,s,—~s,rUtUs,—(rUs)}
€Q

{rUs,—r,s}
{rUs,—r,—s} X
{=(ris),r,s} X
{=(ris), r,—s}
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GBs-Construction: Transitions

{rus7 -r, 5}7 {rus7 r, _‘5}7 {rUs, r S}a {—\(rZ/{s), r, _'5}7 {_‘(rus)7 -r, _‘S}

a1 q2 a3 qs qs
Transitions (g, a, q') € d4:
a=qnNAP

AP set of propositional variables
outgoing edges of g; labeled {s},
of g, labeled {r}, etc.

1. If 1Urpa € gand Yo € q
then Y1 UY» € ¢

2. If Y1 Uihy € ¢ and Y1 € g
then 1 UyYn € q

Initial locations

gelyiftpcq

Accepting locations
CHALMERS _ ~ 170922 17 /67
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Remarks on Generalized Buchi Automata

» Construction always gives exponential number of states in |¢|

» Satisfiability checking of LTL is PSPACE-complete

» There exist (more complex) constructions that minimize number of
required states

» One of these is used in SPIN, which moreover computes the states
lazily
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Part 1l

Starting First-order Logic
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Motivation for Introducing First-Order Logic

1) We specify JAVA programs with Java Modeling Language (JML)

JML combines
» JAVA expressions
» First-Order Logic (FOL)

2) We verify JAVA programs using Dynamic Logic

Dynamic Logic combines
» First-Order Logic (FOL)
» JAVA programs
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FOL: Language and Calculus

We introduce:

» FOL as a language
» Sequent calculus for proving FOL formulas

» KeY system as propositional, and first-order, prover (for now)
» Formal semantics
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First-Order Logic: Signature

Signature
A first-order signature X consists of

» aset Ty of types

v

a set Fy of function symbols

v

a set Py of predicate symbols

> a typing ay

Intuitively, the typing ay determines
» for each function and predicate symbol:
> its arity, i.e., number of arguments
> its argument types

» for each function symbol its result type.
Formally:

» ay(p) € Tx* for all p € Py (arity of pis |ax(p)|)
» ax(f) e Ts* x Tx forall f € Fx (arity of f is |ag(f)] — 1)
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Example Signature X; 4+ Constants

Tzl = {int},
F):l = {+, -} U {, -2,-1,0,1,2, },
Ps, = {<}

ay, (<) = (int,int)
as, (+) v,(-) = (int,int,int)
ag,(0) = ax, (1) = ag,(-1) = ... = (int)

«
(0%

Constant Symbols

A function symbol £ with |ax,(f)| =1 (i.e., with arity 0)
is called constant symbol.

Here, the constant symbols are: ...,-2,-1,0,1,2, ...
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Syntax of First-Order Logic: Signature Cont’d

Type declaration of signature symbols
» Write 7 x; to declare variable x of type 7
» Write p(7i1,...,7); for a(p) = (71,...,7r)
» Write 7 f(11,...,7/); for a(f) = (71,...,7r, T)

r =0 is allowed, then write f instead of f().

Example
Variables  integerArray a; int i;
Predicate Symbols  isEmpty(List); alertOn;

Function Symbols  int arrayLookup(int); Object o;
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Example Signature X; 4+ Notation

Typing of Signature:

ay, (<) = (int,int)
ayx,(+) = ay,(-) = (int,int,int)
0421(0) Ozzl(l) = Oczl(—l) =..= (int)

can alternatively be written as:

<(int,int);
int +(int,int);
int 0; int 1; int -1;
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First-Order Terms

We assume a set V of variables (V N (Fs U Ps) = 0).
Each v € V has a unique type ax(v) € Tx.

Terms are defined recursively:

Terms
A first-order term of type 7 € Ty
> is either a variable of type 7, or
> has the form f(t1,...,t,),
where f € Fy has result type 7, and each t; is term of the correct
type, following the typing ay of f.

If f is a constant symbol, the term is written f, instead of f().
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Terms over Signature X,

Example terms over % 1:
(assume variables int vq; int vs;)

Our variant of FOL allows infix notation for common functions:
» -2 + 99
»7 -8
» (7 -8) + 1

» (vi - 8) + v
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Atomic Formulas

Atomic Formulas

Given a signature .
An atomic formula has either of the forms

>

>

>

true
false

t1 =t (“equality”),

where t; and t, are first-order terms of the same type.
p(ti,...,tn) (“predicate”),

where p € Py, and each t; is term of the correct type,
following the typing ay of p.
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Atomic Formulas over Signature X,

Example formulas over ¥ 1:
(assume variable int v;)

» 7 =28
> (7, 8)
» <(-2 - v, 99)

» <(v, v+ 1)

Our variant of FOL allows infix notation for common predicates:
» 7 <8
» -2 - v< 99

» v<v + 1
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First-Order Formulas

Formulas
» each atomic formula is a formula

» with ¢ and ¢ formulas, x a variable, and 7 a type,
the following are also formulas:

> =6 (‘not¢”)

» 9Ny ("pand ")

> oVY (“Pory”)

> o= (P implies ")

> ¢ (" is equivalent to ¢")

» V7 x; ¢ (“forall x of type T holds ¢")

» I 7 x; ¢ (‘“there exists an x of type T such that ¢")

In V7 x; ¢ and 37 x; ¢ the variable x is ‘bound’ (i.e., ‘not free’).

Formulas with no free variable are ‘closed’.
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First-order Formulas: Examples
(signatures/types left out here)

Example (There are at least two elements)

3x,y;~(x = y) )

Example (Strict partial order)

Irreflexivity  Vx; —(x < x)
Asymmetry Vx;Vy;(x < y — =(y < x))
Transitivity Vx; Vy; Vz;

(x <yANy <z—x< 2)

(Is any of the three formulas redundant?)
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Semantics (briefly here, more thorough later)

Domain

A domain D is a set of elements which are (potentially) the meaning of
terms and variables.

Interpretation

An interpretation Z (over D) assigns meaning to the symbols in Fx U Py
(assigning functions to function symbols, relations to predicate symbols).

Valuation

In a given D and Z, a closed formula evaluates to either T or F.

Validity

A closed formula is valid if it evaluates to T in all D and Z.

In the context of specification /verification of programs:
each (D,Z) is called a 'state’.
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Useful Valid Formulas

Let ¢ and ¢ be arbitrary, closed formulas (whether valid or not).

The following formulas are valid:
> (6 AY) > ~pV
> (V) > ~p A
> (true A ¢) <> ¢
> (falseV ¢) <> ¢
> trueV ¢
» —(false A @)
> (9= ) & (mo V)
> ¢ — true
> false — ¢
> (true — @) <> ¢
> (¢ — false) <> —¢
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Useful Valid Formulas

Assume that x is the only variable which may appear freely in ¢ or .

The following formulas are valid:
» (37X ¢) e VT X ¢
» (V7 x; ¢) I T X 0
> (VT x (@A) < (YT xi 9)A(Y T X 9)
> (37 x (V) & BT x o) VET X V)

Are the following formulas also valid?
» (V7 x; (oVY) > (V1 x &)V(YVT X 2)
» (T x (6AY) = 3 Tx )ANET X )
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Remark on Concrete Syntax

Text book SPIN KeY
Negation = ! !
Conjunction A && &
Disjunction v Il |
Implication —, D - —>
Equivalence - <> <>
Universal Quantifier Vx; ¢ n/a \forallT x; ¢
Existential Quantifier dx; ¢ n/a \existsT x; ¢

Value equality = == =
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Motivation for a Sequent Calculus

How to show a formula valid in propositional logic?
— use a semantic truth table.

How about FOL? Formula: isEven(x)V is0dd(x)

x | isEven(x) | is0dd(x) | isEven(x) V is0dd(x)
1 F T T
2 T F T
Checking validity via semantics does not work. J
Instead...
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Reasoning by Syntactic Transformation

Prove validity of ¢ by syntactic transformation of ¢

Logic Calculus: Sequent Calculus based on notion of sequent:

¢17"'7wm = ¢17--~7¢n
~——— ———

antecedent succedent

has same meaning as
(V1A AYm) = ($1 V-V ¢n)
which has (for closed formulas v, ¢;) same meaning as

{1, dmy  E G1 V-V gy
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Notation for Sequents

¢1;---’1/1m = Qsl""?d)n J

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

¢, 1, ... match formulas, ', A, ... match sets of formulas
Characterize infinitely many sequents with single schematic sequent, e.g.,

N = oAy, A

matches any sequent with occurrence of conjunction in succedent

Here, we call ¢ A 1 main formula and ', A side formulas of sequent
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Sequent Calculus Rules

Write syntactic transformation schema for sequents that reflects
semantics of connectives

premisses

F1 - Al oo F, e Ar
= A
——

conclusion

Meaning: For proving the conclusion, it suffices to prove all premisses.

RuleName

Example
= ¢, A =y, A
= o¢ A, A

andRight

Admissible to have no premisses (iff conclusion is valid, e.g., axiom)

A rule is sound (correct) iff the validity of its premisses implies the

validity of its conclusion.
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‘Propositional’ Sequent Calculus Rules

close —mMm——— — false —m————
Moo= ¢ A = true, A I, false = A
left side (antecedent) right side (succedent)

. M= ¢,A Moo= A

O e — e —
" M- — A r— ¢ A
d Mo, v= A = o¢,A rN=y,A
an
Mo ANY= A Fr=o¢ A, A
Mo = A My= A N= ¢, ¥, A
or
MoViy=A r=o¢VyA
) = o¢,A My = A o=y, A
im
P TN F— 65 0,A
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Sequent Calculus Proofs

Goal to prove: G = Y1,...,0m = ¢1,...,0,

» find rule R whose conclusion matches G

> instantiate R such that its conclusion is identical to G

» apply that instantiation to all premisses of R, resulting in new goals
g1, -, Gr

» recursively find proofs for G1, ..., G,

> tree structure with goal as root

» close proof branch when rule without premiss encountered

Proof

Froof Tree
equiv_right

© [ Case 1
. @ B8 Case 2
Goal-directed proof search mpright
replace_known _left
concrete_not_1
» Paper proofs: root at bottom, grow upwards concrece Impl 3
close_goal _antec
» KeY tool proofs: root at top, grow downwards &
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A Simple Proof

CLOSE * * CLOSE
p=p, q b, 9= q

p,(p—4q)=gq
pA(pP—q)=q
= (P AN (P—4q)—q

A proof is closed iff all its branches are closed

Demo
prop.key
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Proving Validity of First-Order Formulas

Proving a universally quantified formula

Claim: V7 x; ¢ is true

How is such a claim proved in mathematics?

All even numbers are divisible by 2 Vint x; (even(x) — divByTwo(x))

Let ¢ be an arbitrary number Declare “unused” constant int c

The even number c is divisible by 2 prove even(c) — divByTwo(c)

Sequent rule V-right
= [x/c] ¢, A
F=V7x; ¢,A

forallRight

> [x/c] ¢ is result of replacing each occurrence of x in ¢ with ¢

» ¢ new constant of type 7
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Proving Validity of First-Order Formulas Cont’d

Proving an existentially quantified formula

Claim: 97 x; ¢ is true

How is such a claim proved in mathematics?

There is at least one prime number Jint x; prime(x)

Provide any “witness”, say, 7 Use variable-free term int 7

7 is a prime number prime(7)

Sequent rule F-right
M= [x/t]¢, I7x; ¢, A
= d7x; ¢,A

existsRight

> t any variable-free term of type 7
» We might need other instances besides t! Keep 7 x; ¢

FMSD: Temporal Model Checking (part 2) + First-Order Logic CHALMERS 170922

4567



Proving Validity of First-Order Formulas Cont’d

Using a universally quantified formula

We assume V7 x; ¢ is true

How is such a fact used in a mathematical proof?

We know that all primes are odd  Vint x; (prime(x) — odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd  prime(17) — odd(17)

Sequent rule V-left
MY7x; ¢, [x/tlg = A
Vrx, ¢ = A

forallLeft

> t any variable-free term of type 7
» We might need other instances besides t! Keep V7 x; ¢
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Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula
We assume J7 x; ¢ is true
How is such a fact used in a mathematical proof?

We know such an element exists. Let's give it a new name for future
reference.

Sequent rule J-left
M [x/c]g = A

existsLeft
3drx; ¢ = A

» ¢ new constant of type 7

FMSD: Temporal Model Checking (part 2) + First-Order Logic CHALMERS 170922 46 / 67



Proving Validity of First-Order Formulas Cont’d

Using an equation between terms

We assume t = t’ is true

How is such a fact used in a mathematical proof?
x=y-1=1=x+1/y

Use x = y—1 to modify x+1/y:
replace x in succedent with right-hand side of antecedent

x=y-1=1=y-1+1/y

Sequent rule =-left
Ne=t[t/t'¢ = A Mt=t =|[t/t'| ¢, A

applyEqL applyEqR
PPYEA M=t ¢— A PPY=A M=t — oA

» Always replace left- with right-hand side (use eqSymm if necessary)

» t,t' variable-free terms of the same type
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Proving Validity of First-Order Formulas Cont’d

Closing a subgoal in a proof
» We derived a sequent that is obviously valid

close true false

M¢=¢,A [ = true, A T, false = A

» We derived an equation that is obviously valid

eqClose

l=t=tA
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Sequent Calculus for FOL at One Glance

left side, antecedent right side, succedent
y rvrx; ¢, [x/t¢ = A = [x/c]¢, A
Vrx;, ¢ = A [=V7rx; ¢, A
. Mx/cl¢g = A = [x/t'|¢, I7x; ¢, A
Ndrx; ¢ = A = 3d7x; ¢, A
Mt=t =[t/t'|¢, A
- Mt=t — ¢, A [—t=tA
(+ application rule on left side)
» [t/t'] ¢ is result of replacing each occurrence of t in ¢ with ¢/
» t,t' variable-free terms of type 7

» ¢ new constant of type 7 (occurs not on current proof branch)

\4

Equations can be reversed by commutativity
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Recap: ‘Propositional’ Sequent Calculus Rules

main left side (antecedent) right side (succedent)
; = ¢, A M= A
e M—-¢= A = —¢, A
d Mo, v=A = ¢, A =y, A
an
FoANYp=A Fr=o¢ A ¢,A
M= A Ny =A =9, ¢,A
> Lovey—A F=ov o0
) = ¢, A MLy = A o= vA
m
P No—v=A Fr= ¢ —1,A
close ————— true ————  false ————
o= o¢A I = true, A I false = A
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Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)

*
p(c,d), Vy; p(c,y) = p(c,d), Ix; p(x,d)
p(c,d), Vy; p(c,y) = 3x; p(x, d)

Vy; p(c,y) = 3 x; p(x,d)

Vy; plc,y) = Yy 3x; p(x,y)
3x; Vyi px,y) = Vy; 3% p(x, y)

Untyped logic: let static type of x and y be T
J-left: substitute new constant ¢ of type T for x
V-right: substitute new constant d of type T for y
V-left: free to substitute any term of type T for y, choose d
J-right: free to substitute any term of type T for x, choose ¢

Close
Demo
MSD:
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Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

Let x, y denote integer constants, both are not zero. We know further
that x divides y.

Show: (y/x)*x =y (')’ is division on integers, i.e., the equation is not
always true, e.g. x =2,y = 1)

Proof: We know x divides y, i.e. there exists a k such that y = k * x.
Let now c denote such a k. Hence we can replace y by ¢ * x on the
right side. ... [

—|(x:0),—|(y:0),y:c.*x=>((c*x)/x)*x:y
~(x=0),2(y=0),y =cxx=(y/x)xx =y
—(x=0),7(y =0),Jint k; y =kxx = (y/x)xx =y
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Features of the KeY Theorem Prover

Demo

rel.key, twolnstances.key

Feature List

» Can work on multiple proofs simultaneously (task list)

» Point-and-click navigation within proof

» Undo proof steps, prune proof trees

» Pop-up menu with proof rules applicable in pointer focus

» Preview of rule effect as tool tip

» Quantifier instantiation and equality rules by drag-and-drop

» Possible to hide (and unhide) parts of a sequent

» Saving and loading of proofs )
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Literature for this Lecture

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hahnle, P. Schmitt,

M. Ulbrich, editors.
Deductive Software Verification - The KeY Book

Vol 10001 of LNCS, Springer, 2016
(E-book at 1ink.springer.com)

» W. Ahrendt, S. Grebing, Using the KeY Prover
Chapter 15 in [KeYbook]

further reading:
» P.H. Schmitt, First-Order Logic,
Chapter 2 in [KeYbook]
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First-Order Semantics

From propositional to first-order semantics

» In prop. logic, an interpretation of variables with { T, F} sufficed
> In first-order logic we must assign meaning to:

» function symbols

» predicate symbols

> variables bound in quantifiers

» Respect typing: int i, List 1 must denote different items

What we need (to interpret a first-order formula)

1. A typed domain of items
2. A mapping from function symbols to functions on items
3. A mapping from predicate symbols to relation on items
4. A mapping from variables to items
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First-Order Domains

1. A typed domain of items:

Definition (Typed Domain)
A non-empty set D of items is a domain.
A typing of D wrt. signature ¥ is a mapping 6 : D — Ty

We require from D and 0 that no type is empty:
for each 7 € Ty, there is a d € D with §(d) =7

» If 6(d) = 7, we say d has type 7.
» D" ={d €D |(d) =7} is called subdomain of type 7.

» It follows that D7 # () for each 7 € Tx.
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First-Order States

2. A mapping from function symbol to functions on items

3. A mapping from predicate symbol to relation on items

Definition (Interpretation, First-Order State)
Let D be a domain with typing ¢.
Let Z be a mapping, called interpretation, from function and predicate
symbols to functions and relations on items, respectively, such that
IZ(f):D* x ---x D" — D" when ax(f) = (r1,...,7r,7)
I(p) SD™t x - x D™ when ax(p) = (11,...,7r)
Then S = (D, 4,Z) is a first-order state.
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First-Order States Cont’d

Example

Signature: int i; short j; int f(int); Object obj; <(int,int);
D = {17, 2, o} where all numbers are short

(i) =17 , _
73) =17 pmt Pt | in 7(<)?
Z(obj) = o (2,2) F
e Q17| T
D™ | I(f) 17,2)| F
2| 2 (17,17) | F
17| 2

One of uncountably many possible first-order states!
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Semantics of Equality

Definition
Interpretation is fixed as Z(=) = {(d, d) | d € D} J

Exercise: write down the predicate table for example domain
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Signature Symbols vs. Domain Elements

» Domain elements different from the terms representing them

» First-order formulas and terms have no access to domain

Example

Signature: Object objl, obj2;
Domain: D = {o}

In this state, necessarily Z(obj1) = Z(obj2) = o
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Variable Assignments

4. A mapping from variables to items

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment [ maps variables to domain elements.
It respects the variable type, i.e., if x has type 7 then §(x) € DT

Definition (Modified Variable Assignment)
Let y be variable of type 7, 8 variable assignment, d € D7:

B0 ={ G 27
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Semantic Evaluation of Terms

Given a first-order state S and a variable assignment
it is possible to evaluate first-order terms under S and 8

Definition (Valuation of Terms)
vals 3 : Term — D such that vals g(t) € D™ for t € Term,:

» vals g(x) = B(x)
> Va/‘g’ﬁ(f(tl, 59009 tr)) = Z(f)(valgwg(tl), 0004 Va/‘gﬁ(tr))

FMSD: Temporal Model Checking (part 2) + First-Order Logic CHALMERS 170922 63 /67



Semantic Evaluation of Terms Cont’d

Example

Signature: int i; short j; int f(int);
D = {17, 2, o} where all numbers are short
Variables: Object obj; int x;

int
7(i) = 17 D Z(f) Va-r g
7(3) = 17 2| 17 obj | o
17| 2 x| 17
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Semantic Evaluation of Formulas

Definition (Valuation of Formulas)
vals g(¢) for ¢ € For

> Valsjﬁ(p(tl, 0000 tr)) =T iff (Va/‘g’ﬁ(tl), YT valgﬁ(t,)) S I(p)
> Valgwg((ﬁ N w) =T iff Va/5”3(¢) =T and Valgwg(w) =T

» —,V,—, <> as in propositional logic

> valsg(V7 x; ¢) =T iff valggs(¢) =T for all d € D7

> valsg(37 x; ¢) =T  iff valggs(¢) = T for at least one d € D7
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Semantic Evaluation of Formulas Cont’d

Example

Signature: short j; int f(int); Object obj; <(int,int);

D = {17, 2, o} where all numbers are short

I(_j) =17 Dint % Dil’lt n I(<)7
pint | 7(f (2,17) T
21 2 (17,2) F
17] 2 (17,17) F

> Va/gﬁ(f(j) <j) ?
> vals g(Jint x; f(x) =x) 7
» vals g(V0Object ol; V0Object 02; ol = 02) 7
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Semantic Notions

Definition (Satisfiability, Truth, Validity)

vals g(¢) = T (¢ is satisfiable)
SE¢ iff forall B :valsg(¢) =T (¢ istruein S)
=X0) iff forallS: SkEo@ (¢ is valid)

Closed formulas that are satisfiable are also true: one top-level notion J

Example
» f(j) <jistruein S
» Jdint x; i = x is valid

» Jint x; =(x = x) is not satisfiable
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