Formal Methods for Software Development Reasoning about Programs with Dynamic Logic

Wolfgang Ahrendt

10 October 2017

Dynamic Logic

(JAVA) Dynamic Logic

Typed FOL

- ▶ + (JAVA) programs p
- + modalities $\langle \mathbf{p} \rangle \phi$, [p] ϕ (p program, ϕ DL formula)
- ▶ + ... (later)

Dynamic Logic

(JAVA) Dynamic Logic

Typed FOL

- + (JAVA) programs p
- + modalities $\langle p \rangle \phi$, [p] ϕ (p program, ϕ DL formula)

▶ + ... (later)

Remark on Hoare Logic and DL In Hoare logic {Pre} p {Post}

(Pre, Post must be FOL)

Dynamic Logic

(JAVA) Dynamic Logic

Typed FOL

- + (JAVA) programs p
- + modalities $\langle p \rangle \phi$, [p] ϕ (p program, ϕ DL formula)

▶ + ... (later)

Remark on Hoare Logic and DL	
In Hoare logic {Pre} p {Post}	(Pre, Post must be FOL)
In DL Pre \rightarrow [p]Post	(Pre, Post any DL formula)

Proving DL Formulas

An Example

$$\forall$$
 int x;
(x = n ∧ x >= 0 →
[i = 0; r = 0;
while(i < n){i = i + 1; r = r + i;}
r = r + r - n;
]r = x * x)

How can we prove that the above formula is valid (i.e. satisfied in all states)?

Semantics of DL Sequents

 $\Gamma = \{\phi_1, \dots, \phi_n\}$ and $\Delta = \{\psi_1, \dots, \psi_m\}$ sets of DL formulas where all logical variables occur bound.

Recall: $\mathcal{S} \models (\Gamma \Longrightarrow \Delta)$ iff $\mathcal{S} \models (\phi_1 \land \dots \land \phi_n) \rightarrow (\psi_1 \lor \dots \lor \psi_m)$

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over DL Formulas) A sequent $\Gamma \Longrightarrow \Delta$ over DL formulas is valid iff

 $\mathcal{S} \models (\Gamma \Longrightarrow \Delta)$ in all states \mathcal{S}

Semantics of DL Sequents

 $\Gamma = \{\phi_1, \dots, \phi_n\}$ and $\Delta = \{\psi_1, \dots, \psi_m\}$ sets of DL formulas where all logical variables occur bound.

Recall: $\mathcal{S} \models (\Gamma \Longrightarrow \Delta)$ iff $\mathcal{S} \models (\phi_1 \land \dots \land \phi_n) \rightarrow (\psi_1 \lor \dots \lor \psi_m)$

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over DL Formulas) A sequent $\Gamma \Rightarrow \Delta$ over DL formulas is valid iff

 $\mathcal{S} \models (\Gamma \Longrightarrow \Delta)$ in all states \mathcal{S}

Consequence for program variables

Initial value of program variables implicitly "universally quantified"

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula. What is "top-level" in a sequential program p; q; r; ?

Symbolic Execution

- Follow the natural control flow when analysing a program
- Values of some variables unknown: symbolic state representation

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula. What is "top-level" in a sequential program p; q; r; ?

Symbolic Execution

- Follow the natural control flow when analysing a program
- Values of some variables unknown: symbolic state representation

Example

Compute the final state after termination of

x=x+y; y=x-y; x=x-y;

Typical form of DL formulas in symbolic execution

 $\langle \texttt{stmt}; \texttt{rest} \rangle \phi \qquad [\texttt{stmt}; \texttt{rest}] \phi$

- Rules symbolically execute first statement ("active statement")
- Repeated application of such rules corresponds to symbolic program execution

Typical form of DL formulas in symbolic execution

 $\langle \texttt{stmt; rest} \rangle \phi \qquad [\texttt{stmt; rest}] \phi$

- Rules symbolically execute *first* statement ("active statement")
- Repeated application of such rules corresponds to symbolic program execution

```
Example (symbolicExecution/simpleIf.key,
Demo, active statement only)
```

```
\programVariables {
    int x; int y; boolean b;
}
\problem {
    \<{ if (b) { x = 1; } else { x = 2; } y = 3; }\> y > x
}
```

$$\begin{split} \textbf{Symbolic execution of conditional} \\ & \text{if } \frac{\Gamma, \texttt{b} = \texttt{TRUE} \Longrightarrow \langle\texttt{p}; \texttt{ rest} \rangle \phi, \Delta \quad \Gamma, \texttt{b} = \texttt{FALSE} \Longrightarrow \langle\texttt{q}; \texttt{ rest} \rangle \phi, \Delta \\ & \Gamma \Longrightarrow \langle\texttt{if (b) } \texttt{f p} \texttt{ lese } \texttt{f q } \texttt{; rest} \rangle \phi, \Delta \end{split}$$

Symbolic execution must consider all possible execution branches

$$\begin{split} \textbf{Symbolic execution of conditional}} \\ \text{if} \ \hline \frac{\Gamma, \text{b} = \text{TRUE} \Rightarrow \langle \text{p} \text{; rest} \rangle \phi, \Delta}{\Gamma \Rightarrow \langle \text{if (b) } \{ \text{ p} \ \} \text{ else } \{ \text{ q} \ \} \text{ ; rest} \rangle \phi, \Delta} \end{split}$$

Symbolic execution must consider all possible execution branches

Symbolic execution of loops: unwind

$$\begin{array}{c} \text{unwindLoop} & \frac{\Gamma \Longrightarrow \langle \text{if (b) } \{ \text{ p; while (b) } p \ \}; \ \text{rest} \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \text{while (b) } \{ p \}; \ \text{rest} \rangle \phi, \Delta} \end{array}$$

Updates for KeY-Style Symbolic Execution

Needed: a Notation for Symbolic State Changes

- Symbolic execution should "walk" through program in natural forward direction
- Need succint representation of state changes, effected by each symbolic execution step
- Want to simplify effects of program execution early
- Want to apply state changes late (to branching conditions and post condition)

Updates for KeY-Style Symbolic Execution

Needed: a Notation for Symbolic State Changes

- Symbolic execution should "walk" through program in natural forward direction
- Need succint representation of state changes, effected by each symbolic execution step
- Want to simplify effects of program execution early
- Want to apply state changes late (to branching conditions and post condition)

We use dedicated notation for state changes: updates

Explicit State Updates

Definition (Syntax of Updates, Updated Terms/Formulas)

If v is program variable, t FOL term type-conformant to v, t' any FOL term, and ϕ any DL formula, then

- $\{v := t\}$ is an update
- $\{v := t\}t'$ is DL term
- $\{v := t\}\phi$ is DL formula

Definition (Semantics of Updates)

State S interprets program variables v with $\mathcal{I}_{S}(v)$ β variable assignment for logical variables in t, define semantics ρ as:

 $\rho_{\beta}(\{\mathtt{v} := t\})(\mathcal{S}) = \mathcal{S}' \text{ where } \mathcal{S}' \text{ identical to } \mathcal{S} \text{ except } \mathcal{I}_{\mathcal{S}'}(\mathtt{v}) = \mathit{val}_{\mathcal{S},\beta}(t)$

Facts about updates $\{v := t\}$

- Update semantics similar to that of assignment
- ▶ Value of update also depends on S and logical variables in t, i.e., β
- Updates are not assignments: right-hand side is FOL term

 $\{\mathbf{x} := n\}\phi$ cannot be turned into assignment (n logical variable)

 ${\tt (x=i++;)}\phi$ cannot (immediately) be turned into update

Updates are not equations: they change value of v

Computing Effect of Updates (Automated)

Rewrite rules for update followed by ... program variable $\begin{cases} \{\mathbf{x} := t\} \mathbf{x} \rightsquigarrow t \\ \{\mathbf{x} := t\} \mathbf{y} \rightsquigarrow \mathbf{y} \end{cases}$ logical variable $\{x := t\} w \rightsquigarrow w$ **complex term** $\{x := t\} f(t_1, ..., t_n) \rightsquigarrow f(\{x := t\} t_1, ..., \{x := t\} t_n)$ (because f is rigid) atomic formula $\{x := t\} p(t_1, ..., t_n) \rightsquigarrow p(\{x := t\} t_1, ..., \{x := t\} t_n)$ FOL formula $\begin{cases} \{\mathbf{x} := t\}(\phi \& \psi) \rightsquigarrow \{\mathbf{x} := t\}\phi \& \{\mathbf{x} := t\}\psi \\ & \dots \\ \{\mathbf{x} := t\}(\forall \tau \ y; \phi) \rightsquigarrow \forall \tau \ y; (\{\mathbf{x} := t\}\phi) \end{cases}$ **program formula** No rewrite rule for $\{x := t\}(\langle p \rangle \phi)$ unchanged!

Update rewriting delayed until p symbolically executed

FMSD: DL 2

Assignment Rule Using Updates

Symbolic execution of assignment using updates $\frac{\Gamma \Longrightarrow \{ \mathtt{x} := t \} \langle \mathtt{rest} \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \mathtt{x} = \mathtt{t}; \ \mathtt{rest} \rangle \phi, \Delta}$

- Simple! No variable renaming, etc.
- Works as long as t is 'simple' (has no side effects)

Demo

updates/assignmentToUpdate.key

Parallel Updates

How to apply updates on updates?

Example

Symbolic execution of

t=x; x=y; y=t;

yields:

{t := x}{x := y}{y := t}

Need to compose three sequential state changes into a single one:

Parallel Updates

How to apply updates on updates?

Example

Symbolic execution of

t=x; x=y; y=t;

yields:

{t := x}{x := y}{y := t}

Need to compose three sequential state changes into a single one: parallel updates

Definition (Parallel Update)

A parallel update has the form $\{v_1 := r_1 || \cdots || v_n := r_n\}$, where each $\{v_i := r_i\}$ is simple update

- All r_i computed in old state before update is applied
- Updates of all program variables v_i executed simultaneously
- ▶ Upon conflict $v_i = v_j$, $r_i \neq r_j$ later update $(\max\{i, j\})$ wins

Definition (Parallel Update)

A parallel update has the form $\{v_1 := r_1 || \cdots || v_n := r_n\}$, where each $\{v_i := r_i\}$ is simple update

- All r_i computed in old state before update is applied
- Updates of all program variables v_i executed simultaneously
- ▶ Upon conflict $v_i = v_j$, $r_i \neq r_j$ later update $(\max\{i, j\})$ wins

Definition (Parallelising Updates, Conflict Resolution) $\{v_1 := r_1\}\{v_2 := r_2\} = \{v_1 := r_1 | | v_2 := \{v_1 := r_1\}r_2\}$

Definition (Parallel Update)

A parallel update has the form $\{v_1 := r_1 || \cdots || v_n := r_n\}$, where each $\{v_i := r_i\}$ is simple update

- All r_i computed in old state before update is applied
- Updates of all program variables v_i executed simultaneously
- ▶ Upon conflict $v_i = v_j$, $r_i \neq r_j$ later update $(\max\{i, j\})$ wins

Definition (Parallelising Updates, Conflict Resolution) $\{v_1 := r_1\}\{v_2 := r_2\} = \{v_1 := r_1 || v_2 := \{v_1 := r_1\}r_2\}$ $\{v_1 := r_1 || \cdots || v_n := r_n\}x = \begin{cases} x & \text{if } x \notin \{v_1, \dots, v_n\} \\ r_k & \text{if } x = v_k, x \notin \{v_{k+1}, \dots, v_n\} \end{cases}$

\implies x < y \rightarrow (t=x; x=y; y=t;) y < x

$$\begin{array}{ll} x < y \implies \{\texttt{t:=x}\} \langle \texttt{x=y}; \ \texttt{y=t}; \rangle \ \texttt{y} < \texttt{x} \\ & \vdots \\ \implies \texttt{x} < \texttt{y} \Longrightarrow \langle \texttt{t=x}; \ \texttt{x=y}; \ \texttt{y=t}; \rangle \ \texttt{y} < \texttt{x} \end{array}$$

FMSD: DL 2

$$\begin{array}{l} x < y \implies \{\texttt{t}:=\texttt{x}\}\{\texttt{x}:=\texttt{y}\}\langle\texttt{y=t};\rangle \; \texttt{y} < \texttt{x} \\ & \vdots \\ x < y \implies \{\texttt{t}:=\texttt{x}\}\langle\texttt{x=y}; \; \texttt{y=t};\rangle \; \texttt{y} < \texttt{x} \\ & \vdots \\ \implies \texttt{x} < \texttt{y} \Longrightarrow \langle\texttt{t=x}; \; \texttt{x=y}; \; \texttt{y=t};\rangle \; \texttt{y} < \texttt{x} \end{array}$$

$$\begin{array}{l} x < y \implies \{\texttt{t}:=\texttt{x} \mid \mid \texttt{x}:=\texttt{y}\}\{\texttt{y}:=\texttt{t}\}\langle\rangle \; \texttt{y} < \texttt{x} \\ & \vdots \\ \texttt{x} < y \implies \{\texttt{t}:=\texttt{x}\}\{\texttt{x}:=\texttt{y}\}\langle\texttt{y}=\texttt{t};\rangle \; \texttt{y} < \texttt{x} \\ & \vdots \\ \texttt{x} < \texttt{y} \implies \{\texttt{t}:=\texttt{x}\}\langle\texttt{x}=\texttt{y}; \; \texttt{y}=\texttt{t};\rangle \; \texttt{y} < \texttt{x} \\ & \vdots \\ \implies \texttt{x} < \texttt{y} \implies \{\texttt{t}:=\texttt{x}\}\langle\texttt{x}=\texttt{y}; \; \texttt{y}=\texttt{t};\rangle \; \texttt{y} < \texttt{x} \end{array}$$

$$\begin{array}{l} x < y \implies \{\texttt{t}:=\texttt{x} \mid\mid \texttt{x}:=\texttt{y} \mid\mid \texttt{y}:=\texttt{x}\} \langle \rangle \; \texttt{y} < \texttt{x} \\ & \vdots \\ x < y \implies \{\texttt{t}:=\texttt{x} \mid\mid \texttt{x}:=\texttt{y}\} \{\texttt{y}:=\texttt{t}\} \langle \rangle \; \texttt{y} < \texttt{x} \\ & \vdots \\ x < y \implies \{\texttt{t}:=\texttt{x}\} \{\texttt{x}:=\texttt{y}\} \langle \texttt{y}=\texttt{t}; \rangle \; \texttt{y} < \texttt{x} \\ & \vdots \\ x < y \implies \{\texttt{t}:=\texttt{x}\} \langle \texttt{x}=\texttt{y}; \; \texttt{y}=\texttt{t}; \rangle \; \texttt{y} < \texttt{x} \\ & \vdots \\ \implies \texttt{x} < \texttt{y} \implies \{\texttt{t}:=\texttt{x}\} \langle \texttt{x}=\texttt{y}; \; \texttt{y}=\texttt{t}; \rangle \; \texttt{y} < \texttt{x} \\ & \vdots \\ \implies \texttt{x} < \texttt{y} \implies \langle \texttt{t}=\texttt{x}; \; \texttt{x}=\texttt{y}; \; \texttt{y}=\texttt{t}; \rangle \; \texttt{y} < \texttt{x} \end{array}$$

$$x < y \implies \{x:=y \mid | y:=x\} \langle \rangle \ y < x$$

$$\vdots$$

$$x < y \implies \{t:=x \mid | x:=y \mid | y:=x\} \langle \rangle \ y < x$$

$$\vdots$$

$$x < y \implies \{t:=x \mid | x:=y\} \{y:=t\} \langle \rangle \ y < x$$

$$\vdots$$

$$x < y \implies \{t:=x\} \{x:=y\} \langle y=t; \rangle \ y < x$$

$$\vdots$$

$$x < y \implies \{t:=x\} \langle x=y; \ y=t; \rangle \ y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies \langle t=x; \ x=y; \ y=t; \rangle \ y < x$$

$$x < y \implies x < y$$

$$\vdots$$

$$x < y \implies \{x:=y \mid\mid y:=x\} \langle \rangle \ y < x$$

$$\vdots$$

$$x < y \implies \{t:=x \mid\mid x:=y \mid\mid y:=x\} \langle \rangle \ y < x$$

$$\vdots$$

$$x < y \implies \{t:=x \mid\mid x:=y\} \{y:=t\} \langle \rangle \ y < x$$

$$\vdots$$

$$x < y \implies \{t:=x\} \{x:=y\} \langle y=t; \rangle \ y < x$$

$$\vdots$$

$$x < y \implies \{t:=x\} \langle x=y; \ y=t; \rangle \ y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies \langle t=x; \ x=y; \ y=t; \rangle \ y < x$$

updates/swap1.key

Example

symbolic execution of x=x+y; y=x-y; x=x-y; gives
 ({x := x+y}{y := x-y}){x := x-y}

Example

symbolic execution of x=x+y; y=x-y; x=x-y; gives

Example

symbolic execution of x=x+y; y=x-y; x=x-y; gives

Example

symbolic execution of x=x+y; y=x-y; x=x-y; gives

Parallel Updates Cont'd

Example

symbolic execution of x=x+y; y=x-y; x=x-y; gives

KeY automatically deletes overwritten (unnecessary) updates

Parallel Updates Cont'd

Example

symbolic execution of x=x+y; y=x-y; x=x-y; gives

KeY automatically deletes overwritten (unnecessary) updates

Parallel updates store intermediate state of symbolic computation

Another use of Updates

If you would like to quantify over a program variable ...

If you would like to quantify over a program variable ...

Not allowed: $\forall \tau i; \langle \dots i \dots \rangle \phi$ (program variables \cap logical variables $= \emptyset$) If you would like to quantify over a program variable ...

Not allowed: $\forall \tau i; \langle \dots i \dots \rangle \phi$ (program variables \cap logical variables $= \emptyset$)

Instead

Quantify over value, and assign it to program variable:

 $\forall \tau \mathbf{x}; \{ \mathbf{i} := \mathbf{x} \} \langle \dots \mathbf{i} \dots \rangle \phi$

Modelling Java in FOL: Fixing a Type Hierarchy

Each interface and class in API and in target program becomes type with appropriate subtype relation

FMSD: DL 2

CHALMERS/GU

The Java Heap

Objects are stored on (i.e., in) the heap.

- Status of heap changes during execution
- Each heap associates values to object/field pairs

The Java Heap

Objects are stored on (i.e., in) the heap.

- Status of heap changes during execution
- Each heap associates values to object/field pairs

The Heap Model of KeY-DL

Each element of data type Heap represents a certain heap status. Two functions involving heaps:

The Java Heap

Objects are stored on (i.e., in) the heap.

- Status of heap changes during execution
- Each heap associates values to object/field pairs

The Heap Model of KeY-DL

Each element of data type Heap represents a certain heap status. Two functions involving heaps:

in F_Σ: Heap store(Heap, Object, Field, any);
 store(h, o, f, v) returns heap like h, but with v associated to (o, f)

The Java Heap

Objects are stored on (i.e., in) the heap.

- Status of heap changes during execution
- Each heap associates values to object/field pairs

The Heap Model of KeY-DL

Each element of data type Heap represents a certain heap status. Two functions involving heaps:

- in F_Σ: Heap store(Heap, Object, Field, any);
 store(h, o, f, v) returns heap like h, but with v associated to (o, f)
- in F_∑: any select(Heap, Object, Field); select(h, o, f) returns value associated to (o, f) in h

Modelling instance fields

Person		
int int	age id	
	<pre>setAge(int newAge) getId()</pre>	

For each JAVA reference type C there is a type C ∈ T_Σ, for example, Person

Modelling instance fields

Person		
int int	age	
int	id	
	<pre>setAge(int newAge)</pre>	
int	getId()	

- For each JAVA reference type C there is a type C ∈ T_Σ, for example, Person
- for each field f there is a unique constant f of type Field, for example, id

Modelling instance fields

Person		
int	age	
int	id	
	<pre>setAge(int newAge)</pre>	
int	getId()	

- For each JAVA reference type C there is a type C ∈ T_Σ, for example, Person
- for each field f there is a unique constant f of type Field, for example, id
- domain of all Person objects: D^{Person}

Modelling instance fields

Person		
int int	age id	
	<pre>setAge(int newAge) getId()</pre>	

- ► for each JAVA reference type C there is a type $C \in T_{\Sigma}$, for example, Person
- for each field f there is a unique constant f of type Field, for example, id
- domain of all Person objects: D^{Person}
- a heap relates objects and fields to values

Modelling instance fields

Person		
int int	age id	
	<pre>setAge(int newAge) getId()</pre>	

- ► for each JAVA reference type C there is a type $C \in T_{\Sigma}$, for example, Person
- for each field f there is a unique constant f of type Field, for example, id
- domain of all Person objects: D^{Person}
- a heap relates objects and fields to values

Reading Field id of Person p
FOL notation select(h, p, id)

Modelling instance fields

	Person
int int	age id
	<pre>setAge(int newAge) getId()</pre>

- ► for each JAVA reference type C there is a type $C \in T_{\Sigma}$, for example, Person
- for each field f there is a unique constant f of type Field, for example, id
- domain of all Person objects: D^{Person}
- a heap relates objects and fields to values

Reading Field id of Person p

FOL notation select(h, p, id)

```
KeY notation p.id@h (abbreviating select(h, p, id))
```

Modelling instance fields

	Person
int int	age id
	<pre>setAge(int newAge) getId()</pre>

- ► for each JAVA reference type C there is a type $C \in T_{\Sigma}$, for example, Person
- for each field f there is a unique constant f of type Field, for example, id
- domain of all Person objects: D^{Person}
- a heap relates objects and fields to values

Reading Field id of Person p

FOL notation select(h, p, id)
KeY notation p.id@h (abbreviating select(h, p, id))
p.id (abbreviating select(heap, p, id))^a

^aheap is special program variable for "current" heap; mostly implicit in *o.f*

Modelling instance fields

Person		
int int	age id	
	<pre>setAge(int newAge) getId()</pre>	

- For each JAVA reference type C there is a type C ∈ T_Σ, for example, Person
- for each field f there is a unique constant f of type Field, for example, id
- domain of all Person objects: D^{Person}
- a heap relates objects and fields to values

Writing to Field id of Person p

FOL notation store(*h*, p, id, 6238)

Modelling instance fields

Person		
${f int}{{ m int}}$	age id	
	<pre>setAge(int newAge) getId()</pre>	

- For each JAVA reference type C there is a type C ∈ T_Σ, for example, Person
- for each field f there is a unique constant f of type Field, for example, id
- domain of all Person objects: D^{Person}
- a heap relates objects and fields to values

Writing to Field id of Person p

FOL notation store(h, p, id, 6238) KeY notation h[p.id := 6238] (notation for store, not update)

We do *not* formalise the *structure* (implementation) of heaps. We formalise the *behaviour*, with an algebra of heap operations:

select(store(h, o, f, v), o, f) =

We do *not* formalise the *structure* (implementation) of heaps. We formalise the *behaviour*, with an algebra of heap operations:

select(store(h, o, f, v), o, f) = v

We do *not* formalise the *structure* (implementation) of heaps. We formalise the *behaviour*, with an algebra of heap operations:

$$\texttt{select}(\texttt{store}(h, o, f, v), o, f) = v$$

 $(o \neq o' \lor f \neq f') \rightarrow \texttt{select}(\texttt{store}(h, o, f, x), o', f') =$

We do *not* formalise the *structure* (implementation) of heaps. We formalise the *behaviour*, with an algebra of heap operations:

select(store(h, o, f, v), o, f) = v $(o \neq o' \lor f \neq f') \rightarrow \texttt{select}(\texttt{store}(h, o, f, x), o', f') = \texttt{select}(h, o', f')$

We do *not* formalise the *structure* (implementation) of heaps. We formalise the *behaviour*, with an algebra of heap operations:

$$\texttt{select}(\texttt{store}(h, o, f, v), o, f) = v$$

 $(o \neq o' \lor f \neq f') \rightarrow \texttt{select}(\texttt{store}(h, o, f, x), o', f') = \texttt{select}(h, o', f')$

Example

$$\begin{aligned} & \texttt{select}(\texttt{store}(h, \texttt{o}, \texttt{f}, \texttt{15}), \texttt{o}, \texttt{f}) &\leadsto \texttt{15} \\ & \texttt{select}(\texttt{store}(h, \texttt{o}, \texttt{f}, \texttt{15}), \texttt{o}, \texttt{g}) &\leadsto \texttt{select}(h, \texttt{o}, \texttt{g}) \\ & \texttt{select}(\texttt{store}(h, \texttt{o}, \texttt{f}, \texttt{15}), \texttt{u}, \texttt{f}) &\leadsto \\ & \texttt{if} (\texttt{o} = \texttt{u}) \texttt{then} (\texttt{15}) \texttt{else} (\texttt{select}(h, \texttt{u}, \texttt{f})) \end{aligned}$$

Pretty Printing

Shorthand Notations for Heap Operations

o.f@h	is	select(h,o,f)
h[o.f := v]	is	store(h, o, f, v)

Pretty Printing

Shorthand Notations for Heap Operations

o.f@h	is	select(h, o, f)
h[o.f := v]	is	store(h, o, f, v)
therefore:		
u.f@h[o.f := v]	is	select(store(h, o, f, v), u, f)
$\mathtt{h}[\mathtt{o.f}:=\mathtt{v}][\mathtt{o}'.\mathtt{f}':=\mathtt{v}']$	is	store(store(h, o, f, v), o', f', v')

Pretty Printing

Shorthand Notations for Heap Operations

o.f@h	is	select(h, o, f)
h[o.f := v]	is	store(h, o, f, v)
therefore:		
u.f@h[o.f := v]	is	select(store(h, o, f, v), u, f)
$\mathtt{h}[\mathtt{o.f}:=\mathtt{v}][\mathtt{o}'.\mathtt{f}':=\mathtt{v}']$	is	store(store(h, o, f, v), o', f', v')

Very-Shorthand Notations for Current Heap Current heap always in special variable heap.

o.f is select(heap, o, f)
{o.f := v} is update {heap := heap[o.f := x]}

Is formula select(h, p, id) >= 0 type-safe?

Is formula select(h, p, id) >= 0 type-safe?

- 1. Return type is any-need to 'cast' to int
- 2. There can be many fields with name id

Is formula select(h, p, id) >= 0 type-safe?

- 1. Return type is any—need to 'cast' to int
- 2. There can be many fields with name id

Real Field Access

int::select(h, p, Person::\$id) >= 0 is type-safe

- int::select is a function name, not a cast
- can be understood intuitively as (int)select

Is formula select(h, p, id) >= 0 type-safe?

- 1. Return type is any-need to 'cast' to int
- 2. There can be many fields with name id

Real Field Access

int::select(h, p, Person::\$id) >= 0 is type-safe

- int::select is a function name, not a cast
- can be understood intuitively as (int)select

General

For each T typed field f of class C, F_{Σ} contains

- a constant declared as Field C::\$f
- ► a function declared as T T::select(Heap, C, Field)

Is formula select(h, p, id) >= 0 type-safe?

- 1. Return type is any-need to 'cast' to int
- 2. There can be many fields with name id

Real Field Access

int::select(h, p, Person::\$id) >= 0 is type-safe

- int::select is a function name, not a cast
- can be understood intuitively as (int)select

General

For each T typed field f of class C, F_{Σ} contains

- a constant declared as Field C::\$f
- ► a function declared as T T::select(Heap, C, Field)

Everything blue is a function name

Writing to Fields

Declaration: Heap store(Heap, Object, Field, any);

Usage: store(h, p, Person::\$id, 42)

Changing the value of fields

How to translate assignment to field, for example, p.age=18; ?

assign
$$\frac{\Gamma \Longrightarrow \{\texttt{o.f} := t\} \langle \texttt{rest} \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \texttt{o.f} = \texttt{t}; \texttt{rest} \rangle \phi, \Delta}$$

Admit on left-hand side of update JAVA location expressions

Changing the value of fields

How to translate assignment to field, for example, p.age=18; ?

$$\begin{array}{l} \text{assign} & \frac{\Gamma \Longrightarrow \{\texttt{heap} := \texttt{store}(\texttt{heap},\texttt{p},\texttt{age},\texttt{18})\} \langle \texttt{rest} \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \texttt{p.age} = \texttt{18}; \texttt{ rest} \rangle \phi, \Delta} \end{array}$$

Admit on left-hand side of update JAVA location expressions

Changing the value of fields

How to translate assignment to field, for example, p.age=18; ?

assign
$$\frac{\Gamma \Longrightarrow \{p.age := 18\} \langle rest \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle p.age = 18; rest \rangle \phi, \Delta}$$

Admit on left-hand side of update JAVA location expressions

Dynamic Logic: KeY input file

KeY reads in all source files and creates automatically the necessary signature (types, program variables, field constants)

Dynamic Logic: KeY input file

KeY reads in all source files and creates automatically the necessary signature (types, program variables, field constants)

Demo

updates/firstAttributeExample.key

Refined Semantics of Program Modalities

Does abrupt termination count as normal termination? No! Need to distinguish normal and exceptional termination Does abrupt termination count as normal termination? No! Need to distinguish normal and exceptional termination

► (p)φ: p terminates normally and formula φ holds in final state (total correctness) Does abrupt termination count as normal termination? No! Need to distinguish normal and exceptional termination

- ► ⟨p⟩φ: p terminates normally and formula φ holds in final state (total correctness)
- ▶ [p] φ: If p terminates normally then formula φ holds in final state (partial correctness)

Does abrupt termination count as normal termination? No! Need to distinguish normal and exceptional termination

- ⟨p⟩φ: p terminates normally and formula φ holds in final state (total correctness)
- ▶ [p] φ: If p terminates normally then formula φ holds in final state (partial correctness)

Abrupt termination on top-level counts as non-termination!

Example Reconsidered: Exception Handling

```
\javaSource "path to source code";
```

```
\programVariables {
    ...
}
\problem {
        p != null -> \<{        p.age = 18;   }\> p.age = 18
}
```

Only provable when no top-level exception thrown

Demo

updates/secondAttributeExample.key

Modeling reference this to the receiving object

Special name for the object whose JAVA code is currently executed:

in JML: Object this;

in Java: Object this;

in KeY: Object self;

Default assumption in JML-KeY translation: **self** != **null**

Which Objects do Exist?

How to model object creation with new ?

How to model object creation with **new**?

Constant Domain Assumption

Assume that domain \mathcal{D} is the same in all states $(\mathcal{D}, \delta, \mathcal{I}) \in States$

Consequence:

Quantifiers and modalities commute:

 $\models (\forall T x; [p]\phi) \leftrightarrow [p](\forall T x; \phi)$

Object Creation (background; no need to remember this)

Realizing Constant Domain Assumption

- Implicitly declared field boolean <created> in class Object
- <created> has value true iff argument object has been created
- Object creation modeled as {heap := create(heap, ob)} for not (yet) created ob (essentially sets <created> field of ob to true)

Object Creation (background; no need to remember this)

Realizing Constant Domain Assumption

- Implicitly declared field boolean <created> in class Object
- <created> has value true iff argument object has been created
- Object creation modeled as {heap := create(heap, ob)} for not (yet) created ob (essentially sets <created> field of ob to true)

$$\label{eq:False} \begin{split} & \Gamma, \; \texttt{select(heap, ob,) = FALSE} \\ & \underbrace{\{\texttt{heap}:=\texttt{create(heap, ob)}\}\{\texttt{o}:=\texttt{ob}\}(\texttt{o}.<\texttt{init>}(\textit{param})\texttt{; }\omega\rangle\phi, \; \Delta}_{\Gamma \implies \texttt{(o = new } T(\textit{param})\texttt{; }\omega\rangle\phi, \; \Delta} \end{split}$$

ob is a fresh program variable

Object Creation (background; no need to remember this)

Realizing Constant Domain Assumption

- Implicitly declared field boolean <created> in class Object
- <created> has value true iff argument object has been created
- Object creation modeled as {heap := create(heap, ob)} for not (yet) created ob (essentially sets <created> field of ob to true)

$$\label{eq:False} \begin{split} & \Gamma, \; \texttt{select(heap, ob,) = FALSE} \\ & \underbrace{\{\texttt{heap}:=\texttt{create(heap, ob)}\}\{\texttt{o}:=\texttt{ob}\}(\texttt{o}.<\texttt{init>}(\textit{param})\,;\,\omega\rangle\phi,\;\Delta}_{\Gamma \implies (\texttt{o}=\;\texttt{new}\;\;T(\textit{param});\;\omega\rangle\phi,\;\Delta} \end{split}$$

ob is a fresh program variable

Alternatives exisit in the literature. E.g.: [Ahrendt, de Boer, Grabe, *Abstract Object Creation in Dynamic Logic – To Be or Not To Be Created*, Springer, LNCS 5850]

FMSD: DL 2

Object Creation Round Tour Java Programs Arrays Side Effects Abrupt Termination Aliasing **Null Pointers**

Summary

Literature

Dynamic Logic to (almost) full Java

KeY supports full sequential Java, with some limitations:

- Limited concurrency
- No generics
- No I/O
- Only preliminary support for floats
- No dynamic class loading or reflexion
- API method calls: need either JML contract or implementation

Java Features in Dynamic Logic: Arrays

Java Features in Dynamic Logic: Complex Expressions

Complex expressions with side effects

- ► JAVA expressions may have side effects, due to method calls, increment/decrement operators, nested assignments
- FOL terms have no side effect on the state

Example (Complex expression with side effects in Java)
int i = 0; if ((i=2)>= 2) i++; value of i ?

Decomposition of complex terms by symbolic execution Follow the rules laid down in JAVA Language Specification

Local code transformations

evalOrderIteratedAssgnmt
$$\frac{\Gamma \Longrightarrow \langle y = t; x = y; \omega \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle x = y = t; \omega \rangle \phi, \Delta} \quad t \text{ simple}$$

Femporary variables store result of evaluating subexpression

$$\label{eq:Fval} \begin{array}{c} \Gamma \Longrightarrow \langle \text{boolean v0; v0 = b; if (v0) p; } \omega \rangle \phi, \Delta \\ \hline \Gamma \Longrightarrow \langle \text{if (b) p; } \omega \rangle \phi, \Delta \end{array} \quad \text{b complex} \end{array}$$

Java Features in Dynamic Logic: Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

 $\langle try \{p\} catch(T e) \{q\} finally \{r\} \omega \rangle \phi$

Java Features in Dynamic Logic: Abrupt Termination

Abrupt Termination: Exceptions and Jumps Redirection of control flow via return, break, continue, exceptions

 $\langle try \{p\} catch(T e) \{q\} finally \{r\} \omega \rangle \phi$

Rule tryThrow matches try-catch in pre-/postfix and active throw

 $\Rightarrow \langle \text{if (e instance of T) } \{ \text{try} \{ x = e; q \} \text{ finally} \{ r \} \} \text{else} \{ r; \text{throw } e; \} \omega \rangle \phi$ $\Rightarrow \langle \text{try} \{ \text{throw } e; p \} \text{ catch} (T x) \{ q \} \text{ finally} \{ r \} \omega \rangle \phi$

Java Features in Dynamic Logic: Abrupt Termination

Abrupt Termination: Exceptions and Jumps Redirection of control flow via return, break, continue, exceptions

 $\langle try \{p\} catch(T e) \{q\} finally \{r\} \omega \rangle \phi$

Rule tryThrow matches try-catch in pre-/postfix and active throw

 $\Rightarrow \langle if (e instance of T) \{try \{x=e;q\} finally \{r\}\} else \{r; throw e;\} \omega \rangle \phi$

 $\Rightarrow \langle try \{ throw e; p \} catch(T x) \{q\} finally \{r\} \omega \rangle \phi$

Demo

```
exceptions/try-catch.key
```

FMSD: DL 2

Java Features in Dynamic Logic: Aliasing

Demo

aliasing/attributeAlias1.key

Java Features in Dynamic Logic: Aliasing

Demo

aliasing/attributeAlias1.key

Reference Aliasing

Alias resolution causes proof split

Null pointer exceptions

There are no "exceptions" in FOL: \mathcal{I} total on FSym Need to model possibility that o = null in o.a

▶ KeY branches over o != null upon each field access

- Most JAVA features covered in KeY
- Several of remaining features available in experimental version
 - Simplified multi-threaded JMM
 - Floats
- Degree of automation for loop-free programs is very high
- Proving loops requires user to provide invariant
 - Automatic invariant generation sometimes possible
- Symbolic execution paradigm lets you use KeY w/o understanding details of logic

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, M. Ulbrich, editors. Deductive Software Verification - The KeY Book Vol 10001 of LNCS, Springer, 2016 (E-book at link.springer.com)

- B. Beckert, V. Klebanov, B. Weiß, Dynamic Logic for Java Chapter 3 in [KeYbook] on the surface only: Sections 3.1, 3.2, 3.4, 3.5.5, 3.5.6, 3.5.7, 3.6
- ► W. Ahrendt, S. Grebing, Using the KeY Prover Chapter 15 in [KeYbook]