
Formal Methods for Software Development
Reasoning about Programs with Dynamic Logic

Wolfgang Ahrendt

10 October 2017

FMSD: DL 2 /GU 171010 1 / 43

Dynamic Logic

(Java) Dynamic Logic

Typed FOL

I + (Java) programs p

I + modalities 〈p〉φ, [p]φ (p program, φ DL formula)

I + . . . (later)

Remark on Hoare Logic and DL

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)

In DL Pre → [p]Post (Pre, Post any DL formula)

FMSD: DL 2 /GU 171010 2 / 43

Dynamic Logic

(Java) Dynamic Logic

Typed FOL

I + (Java) programs p

I + modalities 〈p〉φ, [p]φ (p program, φ DL formula)

I + . . . (later)

Remark on Hoare Logic and DL

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)

In DL Pre → [p]Post (Pre, Post any DL formula)

FMSD: DL 2 /GU 171010 2 / 43

Dynamic Logic

(Java) Dynamic Logic

Typed FOL

I + (Java) programs p

I + modalities 〈p〉φ, [p]φ (p program, φ DL formula)

I + . . . (later)

Remark on Hoare Logic and DL

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)

In DL Pre → [p]Post (Pre, Post any DL formula)

FMSD: DL 2 /GU 171010 2 / 43

Proving DL Formulas

An Example

∀ int x ;
(x = n ∧ x >= 0→

[i = 0; r = 0;
while(i < n){i = i + 1; r = r + i; }
r = r + r− n;

]r = x ∗ x)

How can we prove that the above formula is valid
(i.e. satisfied in all states)?

FMSD: DL 2 /GU 171010 3 / 43

Semantics of DL Sequents

Γ = {φ1, . . . , φn} and ∆ = {ψ1, . . . , ψm} sets of DL formulas
where all logical variables occur bound.

Recall: S |= (Γ =⇒ ∆) iff S |= (φ1 ∧ · · · ∧ φn) → (ψ1 ∨ · · · ∨ ψm)

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over DL Formulas)

A sequent Γ =⇒ ∆ over DL formulas is valid iff

S |= (Γ =⇒ ∆) in all states S

Consequence for program variables

Initial value of program variables implicitly “universally quantified”

FMSD: DL 2 /GU 171010 4 / 43

Semantics of DL Sequents

Γ = {φ1, . . . , φn} and ∆ = {ψ1, . . . , ψm} sets of DL formulas
where all logical variables occur bound.

Recall: S |= (Γ =⇒ ∆) iff S |= (φ1 ∧ · · · ∧ φn) → (ψ1 ∨ · · · ∨ ψm)

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over DL Formulas)

A sequent Γ =⇒ ∆ over DL formulas is valid iff

S |= (Γ =⇒ ∆) in all states S

Consequence for program variables

Initial value of program variables implicitly “universally quantified”

FMSD: DL 2 /GU 171010 4 / 43

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula.
What is “top-level” in a sequential program p; q; r; ?

Symbolic Execution

I Follow the natural control flow when analysing a program

I Values of some variables unknown: symbolic state representation

Example

Compute the final state after termination of

x=x+y; y=x-y; x=x-y;

FMSD: DL 2 /GU 171010 5 / 43

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula.
What is “top-level” in a sequential program p; q; r; ?

Symbolic Execution

I Follow the natural control flow when analysing a program

I Values of some variables unknown: symbolic state representation

Example

Compute the final state after termination of

x=x+y; y=x-y; x=x-y;

FMSD: DL 2 /GU 171010 5 / 43

Symbolic Execution of Programs Cont’d

Typical form of DL formulas in symbolic execution

〈stmt; rest〉φ [stmt; rest]φ

I Rules symbolically execute first statement (“active statement”)
I Repeated application of such rules corresponds to

symbolic program execution

Example (symbolicExecution/simpleIf.key,
Demo , active statement only)

\programVariables {

int x; int y; boolean b;

}

\problem {

\<{ if (b) { x = 1; } else { x = 2; } y = 3; }\> y > x

}

FMSD: DL 2 /GU 171010 6 / 43

Symbolic Execution of Programs Cont’d

Typical form of DL formulas in symbolic execution

〈stmt; rest〉φ [stmt; rest]φ

I Rules symbolically execute first statement (“active statement”)
I Repeated application of such rules corresponds to

symbolic program execution

Example (symbolicExecution/simpleIf.key,
Demo , active statement only)

\programVariables {

int x; int y; boolean b;

}

\problem {

\<{ if (b) { x = 1; } else { x = 2; } y = 3; }\> y > x

}

FMSD: DL 2 /GU 171010 6 / 43

Symbolic Execution of Programs Cont’d

Symbolic execution of conditional

if
Γ, b = TRUE =⇒ 〈p; rest〉φ,∆ Γ, b = FALSE =⇒ 〈q; rest〉φ,∆

Γ =⇒ 〈 if (b) { p } else { q } ; rest〉φ,∆

Symbolic execution must consider all possible execution branches

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ 〈 if (b) { p; while (b) p }; rest〉φ,∆

Γ =⇒ 〈while (b) {p}; rest〉φ,∆

FMSD: DL 2 /GU 171010 7 / 43

Symbolic Execution of Programs Cont’d

Symbolic execution of conditional

if
Γ, b = TRUE =⇒ 〈p; rest〉φ,∆ Γ, b = FALSE =⇒ 〈q; rest〉φ,∆

Γ =⇒ 〈 if (b) { p } else { q } ; rest〉φ,∆

Symbolic execution must consider all possible execution branches

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ 〈 if (b) { p; while (b) p }; rest〉φ,∆

Γ =⇒ 〈while (b) {p}; rest〉φ,∆

FMSD: DL 2 /GU 171010 7 / 43

Updates for KeY-Style Symbolic Execution

Needed: a Notation for Symbolic State Changes

I Symbolic execution should “walk” through program
in natural forward direction

I Need succint representation of state changes,
effected by each symbolic execution step

I Want to simplify effects of program execution early

I Want to apply state changes late
(to branching conditions and post condition)

We use dedicated notation for state changes: updates

FMSD: DL 2 /GU 171010 8 / 43

Updates for KeY-Style Symbolic Execution

Needed: a Notation for Symbolic State Changes

I Symbolic execution should “walk” through program
in natural forward direction

I Need succint representation of state changes,
effected by each symbolic execution step

I Want to simplify effects of program execution early

I Want to apply state changes late
(to branching conditions and post condition)

We use dedicated notation for state changes: updates

FMSD: DL 2 /GU 171010 8 / 43

Explicit State Updates

Definition (Syntax of Updates, Updated Terms/Formulas)

If v is program variable, t FOL term type-conformant to v,
t ′ any FOL term, and φ any DL formula, then

I {v := t} is an update

I {v := t}t ′ is DL term

I {v := t}φ is DL formula

Definition (Semantics of Updates)

State S interprets program variables v with IS(v)
β variable assignment for logical variables in t, define semantics ρ as:

ρβ({v := t})(S) = S ′ where S ′ identical to S except IS′(v) = valS,β(t)

FMSD: DL 2 /GU 171010 9 / 43

Explicit State Updates Cont’d

Facts about updates {v := t}
I Update semantics similar to that of assignment

I Value of update also depends on S and logical variables in t, i.e., β

I Updates are not assignments: right-hand side is FOL term

{x := n}φ cannot be turned into assignment (n logical variable)

〈x=i++;〉φ cannot (immediately) be turned into update

I Updates are not equations: they change value of v

FMSD: DL 2 /GU 171010 10 / 43

Computing Effect of Updates (Automated)

Rewrite rules for update followed by . . .

program variable

{
{x := t}x t
{x := t}y y

logical variable {x := t}w w

complex term {x := t}f (t1, ..., tn) f ({x := t}t1, ..., {x := t}tn)
(because f is rigid)

atomic formula {x := t}p(t1, ..., tn) p({x := t}t1, ..., {x := t}tn)

FOL formula

{x := t}(φ & ψ) {x := t}φ & {x := t}ψ

· · ·
{x := t}(∀ τ y ; φ) ∀ τ y ; ({x := t}φ)

program formula No rewrite rule for {x := t}(〈p〉φ) unchanged!

Update rewriting delayed until p symbolically executed

FMSD: DL 2 /GU 171010 11 / 43

Assignment Rule Using Updates

Symbolic execution of assignment using updates

assign
Γ =⇒ {x := t}〈rest〉φ,∆
Γ =⇒ 〈x = t; rest〉φ,∆

I Simple! No variable renaming, etc.

I Works as long as t is ‘simple’ (has no side effects)

Demo
updates/assignmentToUpdate.key

FMSD: DL 2 /GU 171010 12 / 43

Parallel Updates

How to apply updates on updates?

Example

Symbolic execution of

t=x; x=y; y=t;

yields:

{t := x}{x := y}{y := t}

Need to compose three sequential state changes into a single one:

parallel updates

FMSD: DL 2 /GU 171010 13 / 43

Parallel Updates

How to apply updates on updates?

Example

Symbolic execution of

t=x; x=y; y=t;

yields:

{t := x}{x := y}{y := t}

Need to compose three sequential state changes into a single one:
parallel updates

FMSD: DL 2 /GU 171010 13 / 43

Parallel Updates Cont’d

Definition (Parallel Update)

A parallel update has the form {v1 := r1|| · · · ||vn := rn}, where each
{vi := ri} is simple update

I All ri computed in old state before update is applied

I Updates of all program variables vi executed simultaneously

I Upon conflict vi = vj , ri 6= rj later update (max{i , j}) wins

Definition (Parallelising Updates, Conflict Resolution)

{v1 := r1}{v2 := r2} = {v1 := r1||v2 := {v1 := r1}r2}

{v1 := r1|| · · · ||vn := rn}x =

{
x if x 6∈ {v1, . . . , vn}
rk if x = vk , x 6∈ {vk+1, . . . , vn}

FMSD: DL 2 /GU 171010 14 / 43

Parallel Updates Cont’d

Definition (Parallel Update)

A parallel update has the form {v1 := r1|| · · · ||vn := rn}, where each
{vi := ri} is simple update

I All ri computed in old state before update is applied

I Updates of all program variables vi executed simultaneously

I Upon conflict vi = vj , ri 6= rj later update (max{i , j}) wins

Definition (Parallelising Updates, Conflict Resolution)

{v1 := r1}{v2 := r2} = {v1 := r1||v2 := {v1 := r1}r2}

{v1 := r1|| · · · ||vn := rn}x =

{
x if x 6∈ {v1, . . . , vn}
rk if x = vk , x 6∈ {vk+1, . . . , vn}

FMSD: DL 2 /GU 171010 14 / 43

Parallel Updates Cont’d

Definition (Parallel Update)

A parallel update has the form {v1 := r1|| · · · ||vn := rn}, where each
{vi := ri} is simple update

I All ri computed in old state before update is applied

I Updates of all program variables vi executed simultaneously

I Upon conflict vi = vj , ri 6= rj later update (max{i , j}) wins

Definition (Parallelising Updates, Conflict Resolution)

{v1 := r1}{v2 := r2} = {v1 := r1||v2 := {v1 := r1}r2}

{v1 := r1|| · · · ||vn := rn}x =

{
x if x 6∈ {v1, . . . , vn}
rk if x = vk , x 6∈ {vk+1, . . . , vn}

FMSD: DL 2 /GU 171010 14 / 43

Symbolic Execution with Updates (by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y −> 〈t=x; x=y; y=t;〉 y < x

FMSD: DL 2 /GU 171010 15 / 43

Symbolic Execution with Updates (by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y −> 〈t=x; x=y; y=t;〉 y < x

FMSD: DL 2 /GU 171010 15 / 43

Symbolic Execution with Updates (by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y −> 〈t=x; x=y; y=t;〉 y < x

FMSD: DL 2 /GU 171010 15 / 43

Symbolic Execution with Updates (by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y −> 〈t=x; x=y; y=t;〉 y < x

FMSD: DL 2 /GU 171010 15 / 43

Symbolic Execution with Updates (by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y −> 〈t=x; x=y; y=t;〉 y < x

FMSD: DL 2 /GU 171010 15 / 43

Symbolic Execution with Updates (by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y −> 〈t=x; x=y; y=t;〉 y < x

FMSD: DL 2 /GU 171010 15 / 43

Symbolic Execution with Updates (by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y −> 〈t=x; x=y; y=t;〉 y < x

FMSD: DL 2 /GU 171010 15 / 43

Parallel Updates Cont’d

Demo
updates/swap1.key

FMSD: DL 2 /GU 171010 16 / 43

Parallel Updates Cont’d

Example

symbolic execution of x=x+y; y=x-y; x=x-y; gives

({x := x+y}{y := x-y}){x := x-y}

{x := x+y || y := (x+y)-y}{x := x-y}

{x := x+y || y := (x+y)-y || x := (x+y)-((x+y)-y)}

{x := x+y || y := x || x := y}

{y := x || x := y}

KeY automatically deletes overwritten (unnecessary) updates

Parallel updates store intermediate state of symbolic computation

FMSD: DL 2 /GU 171010 17 / 43

Parallel Updates Cont’d

Example

symbolic execution of x=x+y; y=x-y; x=x-y; gives

({x := x+y}{y := x-y}){x := x-y}

{x := x+y || y := (x+y)-y}{x := x-y}

{x := x+y || y := (x+y)-y || x := (x+y)-((x+y)-y)}

{x := x+y || y := x || x := y}

{y := x || x := y}

KeY automatically deletes overwritten (unnecessary) updates

Parallel updates store intermediate state of symbolic computation

FMSD: DL 2 /GU 171010 17 / 43

Parallel Updates Cont’d

Example

symbolic execution of x=x+y; y=x-y; x=x-y; gives

({x := x+y}{y := x-y}){x := x-y}

{x := x+y || y := (x+y)-y}{x := x-y}

{x := x+y || y := (x+y)-y || x := (x+y)-((x+y)-y)}

{x := x+y || y := x || x := y}

{y := x || x := y}

KeY automatically deletes overwritten (unnecessary) updates

Parallel updates store intermediate state of symbolic computation

FMSD: DL 2 /GU 171010 17 / 43

Parallel Updates Cont’d

Example

symbolic execution of x=x+y; y=x-y; x=x-y; gives

({x := x+y}{y := x-y}){x := x-y}

{x := x+y || y := (x+y)-y}{x := x-y}

{x := x+y || y := (x+y)-y || x := (x+y)-((x+y)-y)}

{x := x+y || y := x || x := y}

{y := x || x := y}

KeY automatically deletes overwritten (unnecessary) updates

Parallel updates store intermediate state of symbolic computation

FMSD: DL 2 /GU 171010 17 / 43

Parallel Updates Cont’d

Example

symbolic execution of x=x+y; y=x-y; x=x-y; gives

({x := x+y}{y := x-y}){x := x-y}

{x := x+y || y := (x+y)-y}{x := x-y}

{x := x+y || y := (x+y)-y || x := (x+y)-((x+y)-y)}

{x := x+y || y := x || x := y}

{y := x || x := y}

KeY automatically deletes overwritten (unnecessary) updates

Parallel updates store intermediate state of symbolic computation

FMSD: DL 2 /GU 171010 17 / 43

Parallel Updates Cont’d

Example

symbolic execution of x=x+y; y=x-y; x=x-y; gives

({x := x+y}{y := x-y}){x := x-y}

{x := x+y || y := (x+y)-y}{x := x-y}

{x := x+y || y := (x+y)-y || x := (x+y)-((x+y)-y)}

{x := x+y || y := x || x := y}

{y := x || x := y}

KeY automatically deletes overwritten (unnecessary) updates

Parallel updates store intermediate state of symbolic computation

FMSD: DL 2 /GU 171010 17 / 43

Another use of Updates

If you would like to quantify over a program variable ...

Not allowed: ∀ τ i; 〈...i...〉φ
(program variables ∩ logical variables = ∅)

Instead

Quantify over value, and assign it to program variable:

∀ τ x ; {i := x}〈...i...〉φ

FMSD: DL 2 /GU 171010 18 / 43

Another use of Updates

If you would like to quantify over a program variable ...

Not allowed: ∀ τ i; 〈...i...〉φ
(program variables ∩ logical variables = ∅)

Instead

Quantify over value, and assign it to program variable:

∀ τ x ; {i := x}〈...i...〉φ

FMSD: DL 2 /GU 171010 18 / 43

Another use of Updates

If you would like to quantify over a program variable ...

Not allowed: ∀ τ i; 〈...i...〉φ
(program variables ∩ logical variables = ∅)

Instead

Quantify over value, and assign it to program variable:

∀ τ x ; {i := x}〈...i...〉φ

FMSD: DL 2 /GU 171010 18 / 43

Modelling Java in FOL: Fixing a Type Hierarchy

Signature based on Java’s type hierarchy

>

Heap Field

any

booleanint Object

classes + interfaces + array types

Null

Each interface and class in API and in target program becomes type
with appropriate subtype relation

FMSD: DL 2 /GU 171010 19 / 43

Modelling the Heap in FOL

The Java Heap

Objects are stored on (i.e., in) the heap.

I Status of heap changes during execution

I Each heap associates values to object/field pairs

The Heap Model of KeY-DL

Each element of data type Heap represents a certain heap status.
Two functions involving heaps:

I in FΣ: Heap store(Heap, Object, Field, any);
store(h, o, f , v) returns heap like h, but with v associated to (o, f)

I in FΣ: any select(Heap, Object, Field);
select(h, o, f) returns value associated to (o, f) in h

FMSD: DL 2 /GU 171010 20 / 43

Modelling the Heap in FOL

The Java Heap

Objects are stored on (i.e., in) the heap.

I Status of heap changes during execution

I Each heap associates values to object/field pairs

The Heap Model of KeY-DL

Each element of data type Heap represents a certain heap status.
Two functions involving heaps:

I in FΣ: Heap store(Heap, Object, Field, any);
store(h, o, f , v) returns heap like h, but with v associated to (o, f)

I in FΣ: any select(Heap, Object, Field);
select(h, o, f) returns value associated to (o, f) in h

FMSD: DL 2 /GU 171010 20 / 43

Modelling the Heap in FOL

The Java Heap

Objects are stored on (i.e., in) the heap.

I Status of heap changes during execution

I Each heap associates values to object/field pairs

The Heap Model of KeY-DL

Each element of data type Heap represents a certain heap status.
Two functions involving heaps:

I in FΣ: Heap store(Heap, Object, Field, any);
store(h, o, f , v) returns heap like h, but with v associated to (o, f)

I in FΣ: any select(Heap, Object, Field);
select(h, o, f) returns value associated to (o, f) in h

FMSD: DL 2 /GU 171010 20 / 43

Modelling the Heap in FOL

The Java Heap

Objects are stored on (i.e., in) the heap.

I Status of heap changes during execution

I Each heap associates values to object/field pairs

The Heap Model of KeY-DL

Each element of data type Heap represents a certain heap status.
Two functions involving heaps:

I in FΣ: Heap store(Heap, Object, Field, any);
store(h, o, f , v) returns heap like h, but with v associated to (o, f)

I in FΣ: any select(Heap, Object, Field);
select(h, o, f) returns value associated to (o, f) in h

FMSD: DL 2 /GU 171010 20 / 43

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I for each Java reference type C there is a
type C ∈ TΣ, for example, Person

I for each field f there is a unique
constant f of type Field, for example, id

I domain of all Person objects: DPerson

I a heap relates objects and fields to values

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h (abbreviating select(h, p, id))
p.id (abbreviating select(heap, p, id))a

aheap is special program variable for “current” heap; mostly implicit in o.f

FMSD: DL 2 /GU 171010 21 / 43

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I for each Java reference type C there is a
type C ∈ TΣ, for example, Person

I for each field f there is a unique
constant f of type Field, for example, id

I domain of all Person objects: DPerson

I a heap relates objects and fields to values

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h (abbreviating select(h, p, id))
p.id (abbreviating select(heap, p, id))a

aheap is special program variable for “current” heap; mostly implicit in o.f

FMSD: DL 2 /GU 171010 21 / 43

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I for each Java reference type C there is a
type C ∈ TΣ, for example, Person

I for each field f there is a unique
constant f of type Field, for example, id

I domain of all Person objects: DPerson

I a heap relates objects and fields to values

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h (abbreviating select(h, p, id))
p.id (abbreviating select(heap, p, id))a

aheap is special program variable for “current” heap; mostly implicit in o.f

FMSD: DL 2 /GU 171010 21 / 43

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I for each Java reference type C there is a
type C ∈ TΣ, for example, Person

I for each field f there is a unique
constant f of type Field, for example, id

I domain of all Person objects: DPerson

I a heap relates objects and fields to values

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h (abbreviating select(h, p, id))
p.id (abbreviating select(heap, p, id))a

aheap is special program variable for “current” heap; mostly implicit in o.f

FMSD: DL 2 /GU 171010 21 / 43

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I for each Java reference type C there is a
type C ∈ TΣ, for example, Person

I for each field f there is a unique
constant f of type Field, for example, id

I domain of all Person objects: DPerson

I a heap relates objects and fields to values

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h (abbreviating select(h, p, id))
p.id (abbreviating select(heap, p, id))a

aheap is special program variable for “current” heap; mostly implicit in o.f

FMSD: DL 2 /GU 171010 21 / 43

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I for each Java reference type C there is a
type C ∈ TΣ, for example, Person

I for each field f there is a unique
constant f of type Field, for example, id

I domain of all Person objects: DPerson

I a heap relates objects and fields to values

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h (abbreviating select(h, p, id))

p.id (abbreviating select(heap, p, id))a

aheap is special program variable for “current” heap; mostly implicit in o.f

FMSD: DL 2 /GU 171010 21 / 43

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I for each Java reference type C there is a
type C ∈ TΣ, for example, Person

I for each field f there is a unique
constant f of type Field, for example, id

I domain of all Person objects: DPerson

I a heap relates objects and fields to values

Reading Field id of Person p

FOL notation select(h, p, id)

KeY notation p.id@h (abbreviating select(h, p, id))
p.id (abbreviating select(heap, p, id))a

aheap is special program variable for “current” heap; mostly implicit in o.f

FMSD: DL 2 /GU 171010 21 / 43

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I for each Java reference type C there is a
type C ∈ TΣ, for example, Person

I for each field f there is a unique
constant f of type Field, for example, id

I domain of all Person objects: DPerson

I a heap relates objects and fields to values

Writing to Field id of Person p

FOL notation store(h, p, id, 6238)

KeY notation h[p.id := 6238] (notation for store, not update)

FMSD: DL 2 /GU 171010 22 / 43

Modelling the Heap in FOL

Modelling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I for each Java reference type C there is a
type C ∈ TΣ, for example, Person

I for each field f there is a unique
constant f of type Field, for example, id

I domain of all Person objects: DPerson

I a heap relates objects and fields to values

Writing to Field id of Person p

FOL notation store(h, p, id, 6238)

KeY notation h[p.id := 6238] (notation for store, not update)

FMSD: DL 2 /GU 171010 22 / 43

The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f) =

v

(o 6= o ′∨f 6= f ′) → select(store(h, o, f , x), o ′, f ′) = select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f) 15

select(store(h, o, f, 15), o, g) select(h, o, g)
select(store(h, o, f, 15), u, f)

if (o = u) then (15) else (select(h, u, f))

FMSD: DL 2 /GU 171010 23 / 43

The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f) = v

(o 6= o ′∨f 6= f ′) → select(store(h, o, f , x), o ′, f ′) = select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f) 15

select(store(h, o, f, 15), o, g) select(h, o, g)
select(store(h, o, f, 15), u, f)

if (o = u) then (15) else (select(h, u, f))

FMSD: DL 2 /GU 171010 23 / 43

The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f) = v

(o 6= o ′∨f 6= f ′) → select(store(h, o, f , x), o ′, f ′) =

select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f) 15

select(store(h, o, f, 15), o, g) select(h, o, g)
select(store(h, o, f, 15), u, f)

if (o = u) then (15) else (select(h, u, f))

FMSD: DL 2 /GU 171010 23 / 43

The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f) = v

(o 6= o ′∨f 6= f ′) → select(store(h, o, f , x), o ′, f ′) = select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f) 15

select(store(h, o, f, 15), o, g) select(h, o, g)
select(store(h, o, f, 15), u, f)

if (o = u) then (15) else (select(h, u, f))

FMSD: DL 2 /GU 171010 23 / 43

The Algebra of Heaps

We do not formalise the structure (implementation) of heaps.
We formalise the behaviour, with an algebra of heap operations:

select(store(h, o, f , v), o, f) = v

(o 6= o ′∨f 6= f ′) → select(store(h, o, f , x), o ′, f ′) = select(h, o ′, f ′)

Example

select(store(h, o, f, 15), o, f) 15

select(store(h, o, f, 15), o, g) select(h, o, g)
select(store(h, o, f, 15), u, f)

if (o = u) then (15) else (select(h, u, f))

FMSD: DL 2 /GU 171010 23 / 43

Pretty Printing

Shorthand Notations for Heap Operations

o.f@h is select(h, o, f)
h[o.f := v] is store(h, o, f, v)

therefore:

u.f@h[o.f := v] is select(store(h, o, f, v), u, f)
h[o.f := v][o′.f′ := v′] is store(store(h, o, f, v), o′, f′, v′)

Very-Shorthand Notations for Current Heap

Current heap always in special variable heap.
o.f is select(heap, o, f)
{o.f := v} is update {heap := heap[o.f := x]}

FMSD: DL 2 /GU 171010 24 / 43

Pretty Printing

Shorthand Notations for Heap Operations

o.f@h is select(h, o, f)
h[o.f := v] is store(h, o, f, v)

therefore:

u.f@h[o.f := v] is select(store(h, o, f, v), u, f)
h[o.f := v][o′.f′ := v′] is store(store(h, o, f, v), o′, f′, v′)

Very-Shorthand Notations for Current Heap

Current heap always in special variable heap.
o.f is select(heap, o, f)
{o.f := v} is update {heap := heap[o.f := x]}

FMSD: DL 2 /GU 171010 24 / 43

Pretty Printing

Shorthand Notations for Heap Operations

o.f@h is select(h, o, f)
h[o.f := v] is store(h, o, f, v)

therefore:

u.f@h[o.f := v] is select(store(h, o, f, v), u, f)
h[o.f := v][o′.f′ := v′] is store(store(h, o, f, v), o′, f′, v′)

Very-Shorthand Notations for Current Heap

Current heap always in special variable heap.
o.f is select(heap, o, f)
{o.f := v} is update {heap := heap[o.f := x]}

FMSD: DL 2 /GU 171010 24 / 43

Modelling the Heap in FOL—The Full Story

Is formula select(h, p, id) >= 0 type-safe?

1. Return type is any—need to ‘cast’ to int

2. There can be many fields with name id

Real Field Access

int::select(h, p,Person::$id) >= 0 is type-safe

I int::select is a function name, not a cast

I can be understood intuitively as (int)select

General

For each T typed field f of class C, FΣ contains

I a constant declared as Field C::$f

I a function declared as T T::select(Heap, C, Field)

Everything blue is a function name

FMSD: DL 2 /GU 171010 25 / 43

Modelling the Heap in FOL—The Full Story

Is formula select(h, p, id) >= 0 type-safe?

1. Return type is any—need to ‘cast’ to int

2. There can be many fields with name id

Real Field Access

int::select(h, p,Person::$id) >= 0 is type-safe

I int::select is a function name, not a cast

I can be understood intuitively as (int)select

General

For each T typed field f of class C, FΣ contains

I a constant declared as Field C::$f

I a function declared as T T::select(Heap, C, Field)

Everything blue is a function name

FMSD: DL 2 /GU 171010 25 / 43

Modelling the Heap in FOL—The Full Story

Is formula select(h, p, id) >= 0 type-safe?

1. Return type is any—need to ‘cast’ to int

2. There can be many fields with name id

Real Field Access

int::select(h, p,Person::$id) >= 0 is type-safe

I int::select is a function name, not a cast

I can be understood intuitively as (int)select

General

For each T typed field f of class C, FΣ contains

I a constant declared as Field C::$f

I a function declared as T T::select(Heap, C, Field)

Everything blue is a function name

FMSD: DL 2 /GU 171010 25 / 43

Modelling the Heap in FOL—The Full Story

Is formula select(h, p, id) >= 0 type-safe?

1. Return type is any—need to ‘cast’ to int

2. There can be many fields with name id

Real Field Access

int::select(h, p,Person::$id) >= 0 is type-safe

I int::select is a function name, not a cast

I can be understood intuitively as (int)select

General

For each T typed field f of class C, FΣ contains

I a constant declared as Field C::$f

I a function declared as T T::select(Heap, C, Field)

Everything blue is a function name

FMSD: DL 2 /GU 171010 25 / 43

Modelling the Heap in FOL—The Full Story

Is formula select(h, p, id) >= 0 type-safe?

1. Return type is any—need to ‘cast’ to int

2. There can be many fields with name id

Real Field Access

int::select(h, p,Person::$id) >= 0 is type-safe

I int::select is a function name, not a cast

I can be understood intuitively as (int)select

General

For each T typed field f of class C, FΣ contains

I a constant declared as Field C::$f

I a function declared as T T::select(Heap, C, Field)

Everything blue is a function name

FMSD: DL 2 /GU 171010 25 / 43

Modelling the Heap in FOL—The Full Story

Writing to Fields

Declaration: Heap store(Heap, Object, Field, any);

Usage: store(h, p, Person::$id, 42)

FMSD: DL 2 /GU 171010 26 / 43

Field Update Assignment Rule

Changing the value of fields

How to translate assignment to field, for example, p.age=18; ?

assign
Γ =⇒ {o.f := t}〈rest〉φ,∆
Γ =⇒ 〈o.f = t; rest〉φ,∆

Admit on left-hand side of update Java location expressions

FMSD: DL 2 /GU 171010 27 / 43

Field Update Assignment Rule

Changing the value of fields

How to translate assignment to field, for example, p.age=18; ?

assign
Γ =⇒ {heap := store(heap, p, age, 18)}〈rest〉φ,∆

Γ =⇒ 〈p.age = 18; rest〉φ,∆

Admit on left-hand side of update Java location expressions

FMSD: DL 2 /GU 171010 27 / 43

Field Update Assignment Rule

Changing the value of fields

How to translate assignment to field, for example, p.age=18; ?

assign
Γ =⇒ {p.age := 18}〈rest〉φ,∆
Γ =⇒ 〈p.age = 18; rest〉φ,∆

Admit on left-hand side of update Java location expressions

FMSD: DL 2 /GU 171010 27 / 43

Dynamic Logic: KeY input file

\javaSource "path to source code referenced in problem ";

\programVariables { Person p; }

\problem {

\<{ p.age = 18; }\> p.age = 18

}

KeY reads in all source files and creates automatically
the necessary signature (types, program variables, field constants)

Demo
updates/firstAttributeExample.key

FMSD: DL 2 /GU 171010 28 / 43

Dynamic Logic: KeY input file

\javaSource "path to source code referenced in problem ";

\programVariables { Person p; }

\problem {

\<{ p.age = 18; }\> p.age = 18

}

KeY reads in all source files and creates automatically
the necessary signature (types, program variables, field constants)

Demo
updates/firstAttributeExample.key

FMSD: DL 2 /GU 171010 28 / 43

Refined Semantics of Program Modalities

Does abrupt termination count as normal termination?
No! Need to distinguish normal and exceptional termination

I 〈p〉φ: p terminates normally and formula φ holds in final state
(total correctness)

I [p]φ: If p terminates normally then formula φ holds in final state
(partial correctness)

Abrupt termination on top-level counts as non-termination!

FMSD: DL 2 /GU 171010 29 / 43

Refined Semantics of Program Modalities

Does abrupt termination count as normal termination?
No! Need to distinguish normal and exceptional termination

I 〈p〉φ: p terminates normally and formula φ holds in final state
(total correctness)

I [p]φ: If p terminates normally then formula φ holds in final state
(partial correctness)

Abrupt termination on top-level counts as non-termination!

FMSD: DL 2 /GU 171010 29 / 43

Refined Semantics of Program Modalities

Does abrupt termination count as normal termination?
No! Need to distinguish normal and exceptional termination

I 〈p〉φ: p terminates normally and formula φ holds in final state
(total correctness)

I [p]φ: If p terminates normally then formula φ holds in final state
(partial correctness)

Abrupt termination on top-level counts as non-termination!

FMSD: DL 2 /GU 171010 29 / 43

Refined Semantics of Program Modalities

Does abrupt termination count as normal termination?
No! Need to distinguish normal and exceptional termination

I 〈p〉φ: p terminates normally and formula φ holds in final state
(total correctness)

I [p]φ: If p terminates normally then formula φ holds in final state
(partial correctness)

Abrupt termination on top-level counts as non-termination!

FMSD: DL 2 /GU 171010 29 / 43

Example Reconsidered: Exception Handling

\javaSource "path to source code ";

\programVariables {

...

}

\problem {

p != null -> \<{ p.age = 18; }\> p.age = 18

}

Only provable when no top-level exception thrown

Demo
updates/secondAttributeExample.key

FMSD: DL 2 /GU 171010 30 / 43

The Self Reference

Modeling reference this to the receiving object

Special name for the object whose Java code is currently executed:

in JML: Object this;

in Java: Object this;

in KeY: Object self;

Default assumption in JML-KeY translation: self != null

FMSD: DL 2 /GU 171010 31 / 43

Which Objects do Exist?

How to model object creation with new ?

Constant Domain Assumption

Assume that domain D is the same in all states (D, δ, I) ∈ States

Consequence:
Quantifiers and modalities commute:

|= (∀T x ; [p]φ)↔ [p](∀T x ; φ)

FMSD: DL 2 /GU 171010 32 / 43

Which Objects do Exist?

How to model object creation with new ?

Constant Domain Assumption

Assume that domain D is the same in all states (D, δ, I) ∈ States

Consequence:
Quantifiers and modalities commute:

|= (∀T x ; [p]φ)↔ [p](∀T x ; φ)

FMSD: DL 2 /GU 171010 32 / 43

Object Creation (background; no need to remember this)

Realizing Constant Domain Assumption

I Implicitly declared field boolean <created> in class Object

I <created> has value true iff argument object has been created

I Object creation modeled as {heap := create(heap, ob)} for not
(yet) created ob (essentially sets <created> field of ob to true)

Γ, select(heap, ob, <created>) = FALSE =⇒
{heap :=create(heap, ob)}{o :=ob}〈o.<init>(param);ω〉φ, ∆

Γ =⇒ 〈o = new T(param); ω〉φ,∆

ob is a fresh program variable

Alternatives exisit in the literature. E.g.:
[Ahrendt, de Boer, Grabe, Abstract Object Creation in Dynamic Logic –
To Be or Not To Be Created, Springer, LNCS 5850]

FMSD: DL 2 /GU 171010 33 / 43

Object Creation (background; no need to remember this)

Realizing Constant Domain Assumption

I Implicitly declared field boolean <created> in class Object

I <created> has value true iff argument object has been created

I Object creation modeled as {heap := create(heap, ob)} for not
(yet) created ob (essentially sets <created> field of ob to true)

Γ, select(heap, ob, <created>) = FALSE =⇒
{heap :=create(heap, ob)}{o :=ob}〈o.<init>(param);ω〉φ, ∆

Γ =⇒ 〈o = new T(param); ω〉φ,∆

ob is a fresh program variable

Alternatives exisit in the literature. E.g.:
[Ahrendt, de Boer, Grabe, Abstract Object Creation in Dynamic Logic –
To Be or Not To Be Created, Springer, LNCS 5850]

FMSD: DL 2 /GU 171010 33 / 43

Object Creation (background; no need to remember this)

Realizing Constant Domain Assumption

I Implicitly declared field boolean <created> in class Object

I <created> has value true iff argument object has been created

I Object creation modeled as {heap := create(heap, ob)} for not
(yet) created ob (essentially sets <created> field of ob to true)

Γ, select(heap, ob, <created>) = FALSE =⇒
{heap :=create(heap, ob)}{o :=ob}〈o.<init>(param);ω〉φ, ∆

Γ =⇒ 〈o = new T(param); ω〉φ,∆

ob is a fresh program variable

Alternatives exisit in the literature. E.g.:
[Ahrendt, de Boer, Grabe, Abstract Object Creation in Dynamic Logic –
To Be or Not To Be Created, Springer, LNCS 5850]
FMSD: DL 2 /GU 171010 33 / 43

Titlepage

Symbolic Execution

Updates

Parallel Updates

Modeling OO Programs

Self

Object Creation

Round Tour
Java Programs
Arrays
Side Effects
Abrupt Termination
Aliasing
Null Pointers

Summary

Literature

FMSD: DL 2 /GU 171010 34 / 43

Dynamic Logic to (almost) full Java

KeY supports full sequential Java, with some limitations:

I Limited concurrency

I No generics

I No I/O

I Only preliminary support for floats

I No dynamic class loading or reflexion

I API method calls: need either JML contract or implementation

FMSD: DL 2 /GU 171010 35 / 43

Java Features in Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

I Java type hierarchy includes array types

I Types ordered according to Java subtyping rules

I Function arr : int→ Field turns integer index into
type Field (required in store).

I Store array elements on heap

I Value of a[i] on the heap store(heap, a, arr(i), 17)
is 17

I Arrays a and b can refer to same object (aliasing)

FMSD: DL 2 /GU 171010 36 / 43

Java Features in Dynamic Logic:
Complex Expressions

Complex expressions with side effects

I Java expressions may have side effects, due to method calls,
increment/decrement operators, nested assignments

I FOL terms have no side effect on the state

Example (Complex expression with side effects in Java)

int i = 0; if ((i=2)>= 2) i++; value of i ?

FMSD: DL 2 /GU 171010 37 / 43

Complex Expressions Cont’d

Decomposition of complex terms by symbolic execution

Follow the rules laid down in Java Language Specification

Local code transformations

evalOrderIteratedAssgnmt
Γ =⇒ 〈y = t; x = y; ω〉φ,∆

Γ =⇒ 〈x = y = t; ω〉φ,∆
t simple

Temporary variables store result of evaluating subexpression

ifEval
Γ =⇒ 〈boolean v0; v0 = b; if (v0) p; ω〉φ,∆

Γ =⇒ 〈if (b) p; ω〉φ,∆
b complex

FMSD: DL 2 /GU 171010 38 / 43

Java Features in Dynamic Logic:
Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

〈try {p} catch(T e) {q} finally {r} ω〉φ

Rule tryThrow matches try–catch in pre-/postfix and active throw

=⇒〈if(e instanceof T){try{x=e;q}finally{r}}else{r;throw e;}ω〉φ
=⇒ 〈try { throw e; p} catch(T x) {q} finally {r} ω〉φ

Demo

exceptions/try-catch.key

FMSD: DL 2 /GU 171010 39 / 43

Java Features in Dynamic Logic:
Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

〈try {p} catch(T e) {q} finally {r} ω〉φ

Rule tryThrow matches try–catch in pre-/postfix and active throw

=⇒〈if(e instanceof T){try{x=e;q}finally{r}}else{r;throw e;}ω〉φ
=⇒ 〈try { throw e; p} catch(T x) {q} finally {r} ω〉φ

Demo

exceptions/try-catch.key

FMSD: DL 2 /GU 171010 39 / 43

Java Features in Dynamic Logic:
Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

〈try {p} catch(T e) {q} finally {r} ω〉φ

Rule tryThrow matches try–catch in pre-/postfix and active throw

=⇒〈if(e instanceof T){try{x=e;q}finally{r}}else{r;throw e;}ω〉φ
=⇒ 〈try { throw e; p} catch(T x) {q} finally {r} ω〉φ

Demo

exceptions/try-catch.key

FMSD: DL 2 /GU 171010 39 / 43

Java Features in Dynamic Logic: Aliasing

Demo

aliasing/attributeAlias1.key

Reference Aliasing

Alias resolution causes proof split

FMSD: DL 2 /GU 171010 40 / 43

Java Features in Dynamic Logic: Aliasing

Demo

aliasing/attributeAlias1.key

Reference Aliasing

Alias resolution causes proof split

FMSD: DL 2 /GU 171010 40 / 43

A Round Tour of Java Features in DL Cont’d

Null pointer exceptions

There are no “exceptions” in FOL: I total on FSym

Need to model possibility that o = null in o.a

I KeY branches over o != null upon each field access

FMSD: DL 2 /GU 171010 41 / 43

Summary

I Most Java features covered in KeY
I Several of remaining features available in experimental version

I Simplified multi-threaded JMM
I Floats

I Degree of automation for loop-free programs is very high
I Proving loops requires user to provide invariant

I Automatic invariant generation sometimes possible

I Symbolic execution paradigm lets you use KeY
w/o understanding details of logic

FMSD: DL 2 /GU 171010 42 / 43

Literature for this Lecture

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt,
M. Ulbrich, editors.
Deductive Software Verification - The KeY Book
Vol 10001 of LNCS, Springer, 2016
(E-book at link.springer.com)

I B. Beckert, V. Klebanov, B. Weiß, Dynamic Logic for Java
Chapter 3 in [KeYbook]
on the surface only: Sections 3.1, 3.2, 3.4, 3.5.5, 3.5.6, 3.5.7, 3.6

I W. Ahrendt, S. Grebing, Using the KeY Prover
Chapter 15 in [KeYbook]

FMSD: DL 2 /GU 171010 43 / 43

link.springer.com

	Titlepage
	Symbolic Execution
	Updates
	Parallel Updates
	Modeling OO Programs
	Self
	Object Creation
	Round Tour
	Java Programs
	Arrays
	Side Effects
	Abrupt Termination
	Aliasing
	Null Pointers

	Summary
	Literature

