
Advanced Algorithms 2014. Exam Problems

Important: Motivate all your answers. An answer, even a correct one,
without motivation does not count.
On the other hand, answer concisely and to the point, without digressions.
Avoid wordy essays. Extensive writing does not necessarily add to clarity,
but it can make it harder to retrieve the relevant statements and logical
steps. As a rule of thumb: all sample solutions together will fit in less than
2 printed pages!

Submission: Mail your answers to ptr@chalmers.se as plain text or PDF
attachment strictly before the given deadline. Do not wait until the last
minute! You may revise your submission arbitrarily often until the deadline,
and only the last version is considered. Feel free to ask questions and to
revise your solutions. If you have any problems to stick to the deadline for
an important reason, inform us in good time, in order to avoid failure.

Help: You must do the exam completely on your own. Neither group work
nor external help is permitted. Used literature beyond the course material
must be cited. Questions may be directed to the teachers only. (However, no
solution hints will be given. Only questions about the interpretation of the
exam problems will be answered.) Utmost academic honesty is expected.
Cheating can lead to failure on the entire course and further consequences.

Problem 1.
In the Load Balancing problem with m machines and n jobs having pro-
cessing times t1, . . . , tn, preemptions were not allowed: Every job must be
completed on one machine. Even for m = 2 machines it is NP-complete to
decide whether we can get the best possible makespan

∑n
j=1 tj/2.

Now we consider Load Balancing with Preemptions: There it is possible to
interrupt a job and move it to another machine. We can even do portions
of the same job simultaneously on several machines. Now we can always
trivially achieve an optimal makespan T ∗ =

∑n
j=1 tj/m. However, we want

more: a makespan T ∗ and a minimum number p of interruptions.
Formulated as a decision problem: “Given t1, . . . , tn, m and p, can the
jobs be scheduled such that the makespan is

∑n
j=1 tj/m, and at most p

interruptions are used?”
Is this problem solvable in polynomial time or NP-complete?

1

Problem 2.
The unweighted Set Cover problem asks to cover a set U completely, by
selecting a minimum number of sets from a given family of sets Si ⊂ U ,
i = 1, . . . ,m. Now we “reverse” the problem: An integer k is also given,
and the problem is to select exactly k sets that cover as many elements as
possible.
Case k = 1 is trivial: The largest set, of size n := max |Si|, is also the best.
Now let us consider k = 2. Cleerly, we can find the best pair of sets in
O(nm2) time. But maybe m is already very large. We could do two steps
of the well-known greedy Set Cover algorithm instead, which requires only
O(nm) time:
Let X be the largest Si. Let Y be a set Sj with maximum |Sj \X|. Output
X and Y .
Your task: Prove that X∪Y has at least 3/4 as many elements as an optimal
pair of sets would have. If you cannot manage the 3/4 ratio, which needs
some detailed work, you may prove a weaker approximation ratio. (Here,
seeing the way how you approach such analysis problems is more important
than a perfect result.)

Problem 3.
We are given a huge database of sets S1, . . . , Sm, all of the same size n,
and we get a new such set S. We are supposed to find the “most similar”
sets in the database, that is, some sets Si with maximum intersection sizes
|Si ∩ S|. But due to the huge size, already a trivial O(mn) time scan would
be too slow. Therefore we only pick a small set R of random elements from
S and check in which sets Si they occur. If R ∩ Si 6= ∅ then we consider
Si a candidate for a large intersection. Then we compute Si ∩ S for these
candidates only, which saves much time.
Let Sj be a fixed set with intersection size k := |Sj ∩ S|. We want to limit
the probability to miss Sj to some fixed number ε > 0. Which size r = |R| is
needed? To simplify the calculation you may assume that the elements for
R are idependently sampled with replacement. (Pick any element of S with
uniform probability, put it back to S, and so on. Thus R might contain the
same element multiple times.)
In the previous question the set Sj was fixed. Now we want to limit the
probability to miss any of the sets Sj with |Sj ∩ S| ≥ k to some fixed
number ε > 0. Which size r = |R| is needed for this stronger guarantee?

2

Problem 4.
In the confused voters problem (hand-in exercise 7), k people want to vote
for candidate A, and n− k people for candidate B, but everybody votes for
the wrong candidate independently with some probability p. Let a := k/n
be the fraction of dedicated voters for A. Suppose that p < 1/2 and a < 1/2
are fixed. Clearly, a < 1/2 means that B should win.
Show that the failure probability (of A winning the election) decreases expo-
nentially as a function of n. Note that you don’t have to do a full calculation;
you are only asked to prove the exponential decrease.
Moreover, for obtaining this conclusion, do you need the assumption that
the voters’ errors are independent?

Problem 5.
A hitting set intersects every set in a given set family. Suppose that each of
the given sets has at most 3 elements. Then we can find find a hitting set
of k elements (if some exists) by a branching algorithm in O∗(3k) time (we
refer to hand-in exercise 11).
We can improve the time considerably with little effort: If all pairs of sets
intersect in 0 or 2 elements, then the problem becomes polynomial. (This
is not very hard to show, but you don’t have to do this here.) It remains
the case that some of the sets share exactly 1 element, such as {a, b, c} and
{c, d, e}.
Your task: Give a branching rule such that the number of leaves in the search
tree is bounded by a function T (k) that satisfies the recurrence T (k) =
T (k − 1) + 4T (k − 2). Show how to get this recurrence, then solve it, and
write the resulting time bound in O∗ notation.

Problem 6.
In an undirected graph, the distance between nodes u and v is the edge
number of a shortest path connecting u and v. A d-independent set is a
subset of nodes where all pairwise distances are larger than d. (Hence a
1-independent set is a usual independent set.)
Give a polynomial-time algorithm to compute a maximum-size 2-independent
set in a tree. Nodes are not weighted.
Ideally it should be a greedy algorithm. (But do not forget to prove its
correctness.)
Plan B if you cannot come up with a greedy algorithm: Use dynamic pro-
gramming in the tree. Give and explain the recursive formula(s).

3

