
Advanced Algorithms Course.

Lecture Notes. Part 9

Algorithms for Problems on Special Instances

Dynamic Programming on Trees

Problems that are NP-complete in general graphs can become rather easy

in special graph classes. Often it happens in practice that the input to a

graph problem is a tree. (For example, many networks are hierarchically

structured.) Most problems on trees can be solved by bottom-up dynamic

programming. We illustrate the principle by the Weighted Vertex Cover

problem which is also equivalent to the Weighted Independent Set problem.

In the given tree we distinguish an arbitrary node r as the root. All

edges are oriented away from the root. This defines a directed tree T . For

every node, let Tv denote the subtree with root v, consisting of v and all

nodes reachable from v via directed edges. We denote the weight of a node

v by w(v). For every v we define OPT (v, 1) and OPT (v, 0) as the weight of

a minimum vertex cover in Tv with v and without v, respectively. What we

want is the minimum of OPT (r, 1) and OPT (r, 0).

These values are computed as follows. If v is a leaf, we immediately

have OPT (v, 1) = w(v) and OPT (v, 0) = 0. Now let v be an inner node,

and v1, . . . , vd the children of v. If v is not in the vertex cover, we have

to take all children, hence OPT (v, 0) =
∑d

i=1OPT (vi, 1). If v is in the

vertex cover, we can independently decide for any child to take it or not,

and the minimum value is optimal. Hence we have OPT (v, 1) = w(v) +∑d
i=1 min(OPT (vi, 1), OPT (vi, 0)).

That’s all! The running time is O(n), since every node is involved in only

constantly many calculations for its parent node. It is recommended to re-

flect upon the question why our OPT function needed the second (Boolean)

argument.

1



As a side remark, the unweighted Vertex Cover problem can even be

solved by a greedy algorithm on trees.

Small Vertex Covers – XP and FPT

The Vertex Cover problem in graphs is NP-complete, but if the graph is al-

ready known (or expected) to have some vertex cover with a “small” number

k of nodes, we can still solve it exactly and efficiently in practice.

Let n always denote the number of nodes in the given graph. A naive

way to find a small vertex cover is to test all subsets of k nodes exhaustively.

Elementary combinatorics tells us that this costs O(knk+1/k!) time: Note

that O(kn) time is sufficient to test whether a given set of k nodes is a vertex

cover, and the other factor comes from
(n
k

)
. This time bound is feasible only

for very small k. The bad thing is that k appears in the exponent of n. It

would be much better to have a time bound of the form O(bkp(n)), where

b is a constant base, and p some fixed polynomial. (To get a feeling of the

tremendous difference, try some concrete figures and compare the naive time

bound for Vertex Cover with the bounds we will obtain below.)

A problem with input length n and another input parameter k is said to

be in the complexity class XP if it can be solved in O(nf(k)) time, where

f is any computable function. A problem with input length n and another

input parameter k is called fixed-parameter tractable (FPT) if it can be

solved in O(f(k) · p(n)) time, where f is any computable function (usually

exponential) and p is some polynomial. We may write O∗(f(k)) instead of

O(f(k) · p(n)) if we want to suppress the polynomial factor and stress the

more important parameterized part of the complexity.

In the following we show that Vertex Cover is not only an XP problem

but an FPT problem. The basic algorithm is: Take an uncovered edge (i, j)

and put node i or node j in the solution. Repeat this step recursively in

both branches, until k nodes are chosen or all edges are covered.

Upon every decision (i or j) we create new branches, hence the whole

process has the form of a recursion tree that we call a bounded search

tree. Since at most k nodes of the graph are allowed in a solution, the tree

has depth at most k, thus at most 2k leaves and O(2k) nodes. If some leaf

represents a vertex cover, we have found a solution, otherwise we know that

there is no solution. To bound the time complexity, it remains to check

how much time we need to process any node of the search tree: In a simple

implementation we may copy the whole graph, delete in one copy all edges

incident to i, and delete in one copy all edges incident to j (because these

2



edges are already covered). The main work is copying. Here we observe

that the whole graph can have at most kn edges, otherwise no vertex cover

of size k can exist. Hence copying costs O(kn) time, and the overall time is

O(2kkn) = O∗(2k).

Although this is already much better than naive exhaustive search, fur-

ther improvements would still be desirable. Here, the more important part

is the exponential factor 2k. Can we improve the base 2 and thus make the

algorithm practical for somewhat larger k?

The weakness of the search tree algorithm above is that it considers

single edges and selects only one vertex at a time. If we could select more

vertices, we could generate our solutions faster. Now observe: For any node

i, we have to take i or all its neighbors, in order to cover all edges incident to

i. It might be good to apply this branching rule on nodes i of high degree.

But what if the graph has no high-degree nodes?

If all degrees are at most 2, the graph consists of simple paths and cycles,

and the problem is trivial. Thus we can assume (worst case!) that there is

always a node of degree 3 or larger. In a branching step we take either 1

node or 3 nodes (or more). How large is our search tree?

This can be analyzed by recurrence equations, similar to the analysis

of divide-and-conquer algorithms. Let T (k) be the number of leaves of a

search tree for vertex covers of size k. Due to our branching rule we have

T (k) = T (k−1)+T (k−3). To figure out what function T is, we assume that

it has the form T (k) = xk with an unknown constant base x. Our recurrence

becomes xk = xk−1 +xk−3, which simplifies to x3 = x2 + 1. This equation is

called the characteristic equation of the recurrence. Numerical evaluation

shows x ≈ 1.47, which is much better than 2. Researchers have invented

more tricky branching rules for Vertex Cover and further accelerated the

branching process. Meanwhile the best known base is below 1.3.

Anyway, we have shown the time bound O(1.47kkn) = O∗(1.47k).

3


