
Advanced Algorithms Course.

Lecture Notes. Part 8

About Randomized Algorithms in General

Randomized algorithms should not be confused with average-case analy-

sis. All randomness is with the algorithms, while nothing is assumed about

the probability distribution of inputs. The analysis results (expected time,

probability of a correct solution, etc.) hold for every fixed instance, not only

averaged on all instances.

The Global Minimum Cut algorithm is an example of a Monte Carlo

algorithm. These are algorithms that run in polynomial time in the worst

case, but whose result can be wrong with some small probability. However

this failure probability can be reduced exponentially by repeated runs. The

latter technique is called amplification. By way of contrast, a Las Vegas

algorithm gives always the correct result, but only an expected time bound

can be shown, and the running time can be much higher in the worst case.

3-SAT: How to Satisfy Many Conditions

The Satisfiability problem (SAT) asks to assign truth values to the variables

in a boolean formula so as to make the formula true. Specifically, the formula

is given as a conjunction of clauses, where each clause is a disjunction of

literals, i.e., unnegated or negated boolean variables. SAT appears directly

in many real problem settings where logical variables have to satisfy certain

constraints. In 3-SAT, every clause has 3 literals. 3-SAT is a classical

NP-complete problem. MAX 3-SAT is the following natural relaxation of

3-SAT: If the formula is not satisfiable, find an assignment of truth values

that satisfies as many clauses as possible. By an obvious reduction from

3-SAT we see that MAX 3-SAT is also NP-complete.

On the other hand, if any conjunction of k clauses with exactly 3 literals

is given, we can easily find an assignment that satisfies most of the clauses,
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namely 0.875k in expectation. An extremely simple randomized algorithm

will do: Assign truth values 0 or 1, each with probability 1/2, to all variables

independently. The analysis is very simple, too: Every clause is satisfied

with probability 7/8, hence, by linearity of expectation, an expected number

of 7k/8 clauses is satisfied.

We can conclude more from this result: Since an expected number of 7/8

of all clauses is satisfied, there must always exist some truth value assignment

that actually satisfies at least 7/8 of the clauses. This easily follows from a

general argument: Consider the random variable X indicating the number

of satisfied clauses. The expected value E[X] is the average value of X,

weighted by the probabilities of values. Hence any random variable X can

take on some value greater than or equal to E[X].

This reasoning is the famous Probabilistic Method: When we look for a

certain combinatorial structure (here: a truth assignment satisfying many

clauses), we may apply some simple randomized algorithm and show that

the desired structure is produced with some positive probability. Hence this

structure must exist. Of course, the approach does not work for any such

problem (due to lack of a simple randomized algorithm), and it proves only

the existence of the thing we are looking for, but it does not say how we can

find it efficiently. These questions must be studied for any specific search

problem at hand.

In the case of MAX 3-SAT, how difficult is it to actually find an as-

signment that satisfies at least 7/8 of the clauses? The obvious idea is to

iterate the above algorithm until success. We analyze the expected number

of iterations needed.

Let k be the number of clauses, and let pj be the probability of satisfying

exactly j clauses. Since the expected value of j is 7k/8, we have the following

equation, where the sum is already split in two cases: 7k/8 =
∑

j jpj =∑
j<7k/8 jpj +

∑
j≥7k/8 jpj . As an abbreviation we define p :=

∑
j≥7k/8 pj ,

and we let k′ be the largest integer with k′ < 7k/8. We upperbound the

sum generously and obtain

7k/8 ≤
∑

j<7k/8

k′pj +
∑

j≥7k/8
kpj = k′(1− p) + kp ≤ k′ + kp.

Thus we have kp ≥ 7k/8− k′, which is at least 1/8 due to the definition of

k′. Thus, a random assignment succeeds with probability p ≥ 1/8k, and the

expected waiting time for success is at most 8k iterations.

Note that this is a Las Vegas algorithm. Furthermore, note that it

does not solve the actual MAX 3-SAT problem. It guarantees only 0.875k
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satisfied clauses in every input. But what if, for example, 0.95k clauses are

satisfiable ...? In fact, it has been shown that, for any small ε > 0, it is

already NP-complete to decide whether a MAX 3-SAT instance allows to

satisfy (0.875 + ε)k clauses. In this sense, running the simple randomized

algorithm is already the best one can do in general.

Median Finding and Selection

The so-called Selection problem is to find the element of rank k in a set S of

n distinct numbers. The rank is the position that the element would have if

S were sorted. A simpler formulation is: Find the k-th smallest element in

S. Note that S is given in arbitrary order and is in general not sorted. The

element with rank bn/2c is called the median. Median finding and Selection

have nice applications in geometry and in the analysis of statistical data.

In the refined greedy algorithm that gave an approximation ratio 1.5 for

Load Balancing we had sorted the jobs by length. A closer look reveals that

we actually need much less: It is enough to separate the m longest jobs

from the shorter jobs, since neither the algorithm nor the analysis uses any

sorting within these two sets of jobs.

We may first sort S in O(n log n) time, which makes the Selection prob-

lem trivial. But the nice thing is that we can bypass sorting and solve Selec-

tion directly in O(n) time. There exists a deterministic divide-and-conquer

algorithm for Selection, but it is a bit complicated and, more importantly,

the hidden constant in O(n) is rather large. It is much more advisable to

apply a simple randomized algorithm like the following.

Choose an element s ∈ S called the splitter. Compare all elements to

s, in O(n) time. Now we know the rank r of s. If r > k then throw out s

and all elements larger than s. If r < k then throw out s and all elements

smaller than s, and set k := k − r. If r = k then return s. Repeat this

procedure recursively.

Correctness should be obvious. The only unspecified step is the choice of

the splitter. Let us use the above scheme with a splitter chosen uniformly at

random. That is, every element of S becomes the splitter with probability

1/n.

Intuitively, this is a good algorithm because a random element will usu-

ally split the set in two reasonably well balanced subsets, hence the number

of elements to consider should exponentially decrease in each iteration. For
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a rigorous analysis of the expected time needed by this Las Vegas algo-

rithm, we simply introduce a “cut-off point” that defines when the split

is well balanced or not. More precisely, we call an element “central” in a

set, if this element is smaller and larger, respectively, than at least 1/4 of

the elements. We say that the algorithm is “in phase j” if the number of

remaining elements is between n(3/4)j+1 and n(3/4)j . Clearly, our ran-

dom splitter is central with probability 1/2. It follows immediately that the

expected number of splitters needed in every phase j is 2 = O(1). Further-

more, since
∑

j n(3/4)j is a geometric series converging to some O(n), the

total expected time is O(n), but now with some moderate hidden constant.

A Quick but Rigorous Analysis of Quicksort

The basic version of the famous Quicksort algorithm (which we do not repeat

here) works with a random splitter in every recursion step. For the sake of

a simple analysis we slightly modify the algorithm, however we keep it close

to the original Quicksort: We check after comparison to all other elements

whether the random splitter is central, and if not, we discard it altogether

and pick a new splitter. Of course, this is a certain waste of time. Hence

the original Quicksort performs no worse than this modified Quicksort.

We say that a subproblem is “of type j” if the number of elements is

between n(3/4)j+1 and n(3/4)j . We find a central splitter after an expected

number of only 2 attempts. Thus, the expected time spent on any subprob-

lem of type j is O(n(3/4)j). Moreover, since we accepted only central split-

ters, we can easily see that all subproblems of type j are pairwise disjoint,

i.e., they deal with disjoint subsets of the entire set. Hence at most (4/3)j+1

subproblems of type j can exist during the execution of the algorithm. By

linearity of expectation, the expected time spent on all subproblems of size

j is therefore O(n). Since O(log n) types exist, the total expected time is

O(n log n).
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