
Advanced Algorithms Course.

Lecture Notes. Part 7

Randomized Algorithms

Basics of Probability Theory

This section is not a full-fledged introduction to probability theory, but

only a repetition of the absolute minimum of knowledge needed for a real

understanding of randomized algorithms and their analysis.

The mathematical essence of the notion of probability can be described

by Kolmogorov’s axioms, without recurring to the interpretation of proa-

bilities. According to this approach, we first specify a probability space

which “lives” on a set Ω. For simplicity we will focus on discrete sets Ω,

which is the most relevant case in algorithmic contexts. Subsets of Ω are

called events. The probability Pr(A) of an event A is a number from the in-

terval [0, 1], and probabilities have to satisfy the following simple properties

(and these are Kolmogorov’s axioms): Pr(∅) = 0; Pr(Ω) = 1; if A ∩ B = ∅
then Pr(A ∪B) = Pr(A) + Pr(B) (additivity).

For a single-element event A = {ω} we may simply write Pr(ω) instead

of Pr(A) = Pr({ω}). A set Ω together with a probability function Pr

forms a probability space. (In the case of infinite Ω, the function Pr

is only defined on a certain family of events, and the additivity axiom is

formulated for countably infinite sums.)

From the axioms it follows immediately that Pr(Ω\A) = 1−Pr(A), and

Pr(A∪B) ≤ Pr(A) +Pr(B) for any events A and B. The latter inequality

is so useful that it deserves a name: it is called the union bound. One can

use it to bound the probablity of a complicated event which is, however, the

disjunction of simpler events with easily computable probabilities.

Sometimes we know already that some event B occurs, and we want to

know the probability of A under this additional knowledge. This condi-

tional probability is given by Pr(A|B) := Pr(A ∩B)/Pr(B). Pronounce

1

Pr(A|B) as “probability of A given B” or “probability of A conditional on

B”. We call an event A independent of an event B if Pr(A|B) = Pr(A).

In that case we obviously get Pr(A ∩ B) = Pr(A)Pr(B), hence the inde-

pendence relation is symmetric, and we can simply say “A and B are in-

dependent”. It is not always intuitive whether two events are independent;

we have to check independence using the definition. Also, do not confuse

independent and disjoint events (A ∩ B = ∅) – these are totally different

things!

A random variable is a function X from a probability space into,

e.g., the real numbers. (We only consider the case of real-valued X and

discrete Ω.) Formally: X : Ω −→ R. Every possible value x of X gets

a probability in an obvious way: Pr(X = x) = Pr(X(ω) = x). We may

consider Pr(X = x) as a function of x and call it the distribution of X.

Note that two random variables with equal distributions are not necessarily

equal as functions; this distinction is important when we combine several

random variables by algebraic operations (see below).

The expected value or expectation of a random variable X is defined

as E[X] :=
∑

ω∈Ω Pr(ω)X(ω). Note that E[X] =
∑

x Pr(X = x) · x, that

is, the expectation depends only on the distribution of X. Intuitively, E[X]

is the long-term average of X when we observe the random variable many

times independently.

A frequent misunderstanding is that Pr(X > E[X]) = 1/2, or similar.

This is far from being true in general. For instance, let X be the random

variable that describes a win in a lottery (where the stake is not considered in

X). The expected win is some (small) positive amount, but the probability

of winning anything is very small, certainly not 1/2. A “probability-free”

formulation of this insight is: The average of a set of values is in general

distinct from the median!

Random variables X and Y on the same probability space are called

independent if Pr(X = x, Y = y) = Pr(X = x)Pr(Y = y) for all values

x and y. In the same way as for random events we could instead define

independence by the property that knowing the value of X has no impact

on the distribution of Y , and then this “product rule” comes out.

Random variables, without loss of generality defined on the same proba-

bility space, can be combined by arbitrary algebraic operations: We simply

apply the operation to their random values. For instance, the sum X +Y of

random variables X and Y is given by (X+Y)(ω) = X(ω)+Y (ω). Similarly

we can define the product, and so on.

2

A useful and powerful property is the linearity of expectation. It says

that E is a linear operator, that means, E[X + Y] = E[X] + E[Y]. Note

that this holds for arbitrary random variables, not only for independent

ones. The proof is a straighforward calculation:

E[X + Y] =
∑
ω∈Ω

Pr(ω)(X + Y)(ω) =
∑
ω∈Ω

Pr(ω)(X(ω) + Y (ω))

=
∑
ω∈Ω

Pr(ω)X(ω) +
∑
ω∈Ω

Pr(ω)Y (ω) = E[X] + E[Y].

A similar property for the product does not hold in general. We have

E[XY] = E[X]E[Y] in special cases only. The most important sufficient

condition is that X and Y are independent. Again, the proof is a straigh-

forward calculation, but this time it is easier to work on the range of values

rather than on Ω. Also note carefully in which step independence is used:

E[XY] =
∑
z

Pr(XY = z)z =
∑
z

∑
x,y:xy=z

Pr(X = x, Y = y)xy

=
∑
z

∑
x,y:xy=z

Pr(X = x)xPr(Y = y)y =
∑
x,y

Pr(X = x)xPr(Y = y)y

=
∑
x

Pr(X = x)x +
∑
y

Pr(Y = y)y = E[X]E[Y].

An important “algorithm” is to repeat a random experiment until suc-

cess: Suppose that we have a 0, 1-valued random variable that attains value

1 with probability p. We observe this variable many times independently,

until result 1 appears for the first time. What is the expected number of

iterations needed? Intuitively one would think 1/p, but intuition is often

misleading, therefore we’d better derive this result by calculation. Although

this is still a basic exercise, a strict formal treatment would already be a

bit tricky: Our probability space is the Cartesian product of infinitely many

copies of a probability space with two events. However we may abbreviate

somewhat and think in a semi-formal way. Let Ei be the event that the ith

iteration is successful. Then Pr(Ei) = (1− p)i−1p. Note that the first i− 1

iterations have failed, and probabilities can be multiplied, because trials are

independent. Hence our expected value is
∑∞

i=1 Pr(Ei)·i =
∑∞

i=1(1−p)i−1pi.

Now some standard algebra (that we omit here) confirms the result 1/p.

3

Global Minimum Cut Revisited

In a graph G = (V,E) with n nodes and m edges we wish to find a global

min-cut (A,B), that is, a partitioning V = A∪B such that the number of cut

edges (those edges between A and B) is minimized. Motivations include the

assessment of reliability of networks, finding clusters in graphs, and efficient

hierarchical computation of distances in graphs.

We can easily reduce the problem to Minimum Cut, by trying all pos-

sible pairs of sources and sinks s, t ∈ V . But since flow and cut algorithms

are somewhat sophisticated, you may be pleased to learn an extremely sim-

ple randomized algorithm that solves the Global Min-Cut problem as well.

However this comes with a price: Success is no longer guaranteed. We will

get a correct solution “only” with high probability.

For simplicity we discuss only the basic randomized algorithm for Global

Min-Cut, although faster algorithms are known. In the following we have

to allow graphs with parallel (multiple) edges. The algorithm works as

follows. In every step, choose an edge e = (u, v) at random and contract it.

Contraction means: shrink e, identify u, v (merge them into a new vertex),

and delete all edges that have been parallel to e (they would be loops at the

new vertex). Iterate this step until two nodes remain. This two-node graph

represents a cut, in the obvious sense. The whole procedure is repeated a

certain number of times from scratch, and finally we output the smallest cut

found in this way.

It may seem that this algorithm has nothing to do with the problem.

It just repeatedly contracts random edges. However, the intuition is that

a small cut has a chance not to be affected by these random contractions,

thus being preserved in the end. Still, the analysis which has to confirm this

intuition is not so obvious. It uses a clever combination of several elementary

tools from probability theory.

Consider any global min-cut (A,B). Let F denote the set of its cut

edges, and k := |F |. After j steps of the algorithm, clearly the contracted

graph has n − j nodes. Moreover, every node has degree at least k, since

otherwise the node and its complement set would already form a global min-

cut smaller than k, a contradiction. Hence at least k(n − j)/2 edges still

exist after j steps. Therefore, the probability that unfortunately some of

the k edges in F is contracted in the next step is at most 2/(n − j). That

4

means, our specific cut (A,B) is returned with probability at least

n−3∏
j=0

(1− 2/(n− j)) =
n−3∏
j=0

((n− j − 2)/(n− j)) = 2/n(n− 1)

after the contraction procedure. (However, think carefully: Why is it correct

to multiply the probabilities, although the events are certainly not indepen-

dent?) This is a small probability, but we repeat this O(m)-time contraction

procedure sufficiently often: Each run fails with probability 1− 2/n(n− 1),

but a simple calculation shows that some of O(n2) runs succeeds, subject

to a small constant failure probability. We can make this failure probability

arbitrarily small by increasing the hidden constant factor in O(n2). (Note

the superficial similarity to approximation schemes.)

5

