
Advanced Algorithms Course.

Lecture Notes. Part 4

Using Linear Programming for Approximation Algorithms

A linear program (LP) is the following task: Given a matrix A and vectors

b, c, compute a vector x ≥ 0 with Ax ≥ b that minimizes the inner product

cTx. This is succinctly written as:

min cTx s.t. x ≥ 0, Ax ≥ b.

The entries of all matrices and vectors are real numbers. LPs can be

solved efficiently (theoretically in polynomial time). However, LP solution

algorithms are not a subject of this course. LP solvers are implemented in

several software packages. Here we use them only as a “black box” to solve

hard problems approximately.

A simple example of this technique is again Weighted Vertex Cover in

a graph G = (V,E). The problem can be reformulated as min
∑

i∈V wixi
s.t. xi + xj ≥ 1 for all edges (i, j). This is almost an LP, but the catch is

that the xi must be 1 or 0 (for node i is in the vertex cover or not), whereas

the variables in an LP are real numbers. Hence we cannot use an LP solver

directly. (Weighted Vertex Cover is NP-complete after all ...)

Instead we solve a so-called LP relaxation of the given problem and then

construct a solution of the actual problem “close to” the LP solution. If

this works well, we should get a good approximation. In our case, a possible

LP relaxation is to allow real numbers xi ∈ [0, 1] for the moment. Let S∗

be a minimum weight vertex cover, and wLP the total weight of an optimal

solution to the LP relaxation. Clearly wLP ≤ w(S∗). Let x∗i denote the

value of variable xi in the optimal solution to the LP relaxation. These

numbers are in general fractional. To get rid of these fractional numbers

we do the most obvious thing: we round them! More precisely: Let S

be set of nodes i with x∗i ≥ 1/2. Variables corresponding to nodes in S

are rounded to 1, others are rounded to 0. S is obviously a vertex cover.

Moreover, wLP ≤ w(S∗) implies w(S) ≤ 2w(S∗), since by rounding we have

1



at most doubled the variable values from the LP relaxation. This gives

us yet another algorithm with approximation ratio 2. – We know already

simpler 2-approximation algorithms for Weighted Vertex Cover, but this was

only an example to demonstrate the general technique of LP relaxation and

rounding.

Reductions and Approximability

The class of optimization problems where a solution within a constant factor

of optimum can be obtained in polynomial time is denoted APX (approx-

imable). There exist problems in APX that do not have a PTAS (unless

P=NP). They are called APX-hard problems. Such results are shown by

reductions, in analogy to NP-hardness results. But beware: A polynomial-

time reduction from one problem to another does in general not imply any-

thing about their approximability. Reductions that establish APX-hardness

must also preserve the solution sizes within constant factors. Here we do

not develop the whole theory but we illustrate this type of reductions by an

example.

A dominating set in a graph is a subset D of nodes such that every node

is in D or has at least a neighbor in D. The Dominating Set problem asks

to find a dominating set with a minimum number of nodes, in a given graph

with n nodes. A minimum dominating set can be approximated within

a factor O(log n) of the optimum size, by a reduction to Set Cover that

preserves the solution sizes. (This is a pretty straightforward exercise.) Now

a natural question is whether we can approximate dominating sets better,

in some other way.

The answer is negative, due to the following reduction from Set Cover

to Dominating Set. Consider any instance of Set Cover problem, on a set U

of size n, and with subsets Si ⊂ U with unit weights. Let I denote the set

of all indices i. We construct a graph G = (V,E) with node set V = I ∪ U .

We insert all possible edges in I. Furthermore we insert all edges between

i ∈ I and u ∈ U where u ∈ Si. Now we prove that the size of a minimum set

cover equals the size of a minimum dominating set in G. Note that every

set cover of size k corresponds to a subset of I which is also a dominating

set of size k. Conversely, let D be any dominating set of size k in G. If D

contains some u ∈ U , we can replace it with some adjacent node i ∈ I. This

yields a set of size at most k which is still dominating. This way we get rid

of all nodes in D ∩ U and finally obtain a dominating set no larger than k,

which is entirely in I. Such a dominating set corresponds to a set cover of

2



size at most k. Together this implies equality.

This polynomial-time and size-preserving reduction shows the following:

If we could approximate Dominating Set with a factor better than O(log n),

then we could also do so for Set Cover, which is believed to be impossible.

Hence our Dominating Set approximation is already as good as it can be.

Summarizing Remarks about Approximation Algorithms

Most of the practically relevant optimization problems are NP-complete,

nevertheless solutions are needed. We call an algorithm an approximation

algorithm if it runs in polynomial time and gives a solution close to optimum.

The approximation ratio is the ratio of the values of the output and of

an optimal solution, minimized or maximized (depending on what type of

problem we have) over all instances. It can be analyzed by relating “simple”

upper and lower bounds on the values of solutions. Some approaches to the

design of approximation algorithms are: greedy rules, solving dual problems

(pricing methods), and LP relaxation followed by rounding, and there are

many more techniques.

All NP-complete decision problems are “equally hard” subject to poly-

nomial factors in their time complexities, but they can behave very differ-

ently as optimization problems. Even different optimization criteria for the

same problem can lead to different complexities. Some problems are approx-

imable within a constant factor, or within a factor that mildly grows with

some input parameters, and some can be solved with arbitrary accuracy in

polynomial time. In the latter case we speak of polynomial-time approxima-

tion schemes. One should also notice that the proved approximation ratios

are only worst-case results. The quality of solutions to specific instances is

often much better. On the other hand, there exist problems for which we

cannot even find any good approximation in polynomial time. One example

is finding maximum cliques in graphs. However, such “hardness of approx-

imation” results require much deeper proof methods than in the theory of

NP-completeness.

3



Network Flow with Applications

The Basic Facts

You are supposed to be already familiar with these basics. This section is in-

serted only for the sake of completeness, as a reminder, and for providing the

terminology and fundamental facts. Internal details of the Ford-Fulkerson

algorithm and residual graphs are not in the lecture, and we will not need

them in the following sections.

Let G = (V,E) be a directed graph where every edge e has an integer

capacity ce > 0. Two special nodes s, t ∈ V are called source and sink,

all other nodes are called internal. We may suppose that no edge enters s

or leaves t. A flow is a function f on the edges such that: 0 ≤ f(e) ≤ ce
holds for all edges e (capacity constraints), and f+(v) = f−(v) holds for

all internal nodes v (conservation constraints), where we define f−(v) :=∑
e=(u,v)∈E f(e) and f+(v) :=

∑
e=(v,u)∈E f(e). (As a menominic aid: f−(v)

is consumed by node v, and f+(v) is generated by node v.) The value of

the flow f is defined as val(f) := f+(s). The Maximum Flow problem is

to compute a flow with maximum value.

The problem can be written as an LP, but there is also a special-purpose

algorithm for Maximum Flow, that we sketch now.

For any flow f in G (not necessarily maximum), we define the residual

graph Gf as follows. Gf has the same nodes as G. For every edge e of

G with f(e) < ce, Gf has the same edge with capacity ce − f(e), called a

forward edge. The difference is obviously the remaining capacity available

on e. For every edge e of G with f(e) > 0, Gf has the opposite edge with

capacity f(e), called a backward edge. By virtue of backward edges we

can “undo” any amount of flow up to f(e) on e by sending it back in the

opposite direction. The residual capacity is defined as ce − f(e) on forward

edges and f(e) on backward edges

Now let P be any simple directed s − t path in Gf , and let b be the

smallest residual capacity of all edges in P . For every forward edge e in

P , we may increase f(e) in G by b, and for every backward edge e in P ,

we may decrease f(e) in G by b. It is not hard to check that the resulting

function f ′ on the edges is still a flow in G. We call P an augmenting

path and f ′ is the augmented flow, obtained by these changes. Note that

val(f ′) = val(f) + b > val(f).

4



Now the generic Ford-Fulkerson algorithm works as follows: Initially

let f := 0. As long as a directed s − t path in Gf exists, augment the flow

f (as described above).

To prove that Ford-Fulkerson outputs a maximum flow, we must show:

If no s− t path in Gf exists, then f is a maximum flow.

The proof is done via another concept of independent interest: An s− t

cut in G = (V,E) is a partition of V into sets A,B with s ∈ A, t ∈ B. The

capacity of a cut is defined as c(A,B) :=
∑

e=(u,v):u∈A,v∈B ce.

For subsets S ⊂ V we define f+(S) :=
∑

e=(u,v):u∈S,v /∈S f(e) and f−(S) :=∑
e=(u,v):u/∈S,v∈S f(e). Remember that val(f) = f+(s)−f−(s) by definition.

(Actually we have f−(s) = 0 if no edge goes into s.) We can generalize this

equation to any cut: val(f) =
∑

u∈A(f+(u) − f−(u)), which follows easily

from the conservation constraints. When we rewrite the last expression for

val(f) as a sum of flows on edges, then, for edges e with both nodes in

A, terms +f(e) and −f(e) cancel out in the sum. It remains val(f) =

f+(A) − f−(A). It follows val(f) ≤ f+(A) =
∑

e=(u,v):u∈A,v/∈A f(e) ≤∑
e=(u,v):u∈A,v/∈A ce = c(A,B). In words: The flow value val(f) is bounded

by the capacity of any cut (which is also intuitive).

Next we show that, for the flow f returned by Ford-Fulkerson, there

exists a cut with val(f) = c(A,B). This implies that the algorithm in fact

computes a maximum flow.

Clearly, when the Ford-Fulkerson algorithm stops, no directed s− t path

exists in Gf . Now we specify a cut as desired: Let A be the set of nodes v

such that some directed s−v path is in Gf , and B = V \A. Since s ∈ A and

t ∈ B, this is actually a cut. For every edge (u, v) with u ∈ A, v ∈ B we have

f(e) = ce (or v should be in A). For every edge (u, v) with u ∈ B, v ∈ A we

have f(e) = 0 (or u should be in A because of the backward edge (v, u) in

Gf ). Altogether we obtain val(f) = f+(A)− f−(A) = f+(A) = c(A,B). In

words: The flow value val(f) equals the capacity of a minimum cut (which

is still intuitive).

The last statement is the famous Max-Flow Min-Cut Theorem.

Another important observation is that the Ford-Fulkerson algorithm re-

turns a flow where all f(e) are integer.

5



Time Complexity of Computing Flows and Cuts

Let n and m denote the number of nodes and edges, respectively.

The Ford-Fulkerson algorithm may need O(mC) time, where C is any

trivial upper bound on the flow value, e.g., the sum of capacities of the edges

at the source. The factor m comes from the time needed to find an aug-

menting path, and the factor C is there since at most C augmentations are

needed. This time bound is not polynomial in the input length. By a care-

ful choice of augmenting paths one can make the Ford-Fulkerson algorithm

polynomial. For instance, taking the shortest augmenting path each time

(i.e., with the smallest number of edges) leads to an O(n2m) time bound,

which we will not prove here. This variant is known as Dinitz’ algorithm.

There exist even faster Maximum Flow algorithms based on somewhat dif-

ferent principles.

Once we have a maximum flow f , we can also compute a minimum

cut (A,B) in O(m) additional time. The proof of the Max-Flow Min-Cut

Theorem hints to an algorithm for this: A is the set of all nodes reachable

from s via directed edges in the residual graph Gf , and B is the rest.

6


