
Advanced Algorithms Course.

Lecture Notes. Part 3

Disjoint Paths and Routing

Given a directed graph with m edges, and k node pairs (si, ti), we wish

to find directed paths from si to ti for as many as possible indices i, that

do not share any edges. We also call such paths edge-disjoint. This is

a fundamental problem in routing in networks. Imagine that we want to

send goods, information, etc., from source nodes to destination nodes along

available directed paths, without unreasonable congestion. In general we

cannot send everything simultaneously, but we may try and maximize the

number of served requests.

The problem is NP-complete (which we do not prove here), but we

present an algorithm with approximation ratio O(
√
m). The square root

is a “small” function, still the quality of the solution deteriorates with grow-

ing network size. This result seems to be poor, but it is the best possible

guarantee one can achieve in polynomial time, and still better than no guar-

antee at all.

As often, the idea of a greedy algorithm is simple: Short paths should

minimize the chances of conflicts with other paths, and the shortest paths

can be computed efficiently. Therefore, the proposed algorithm just chooses

a shortest path that connects some yet unconnected pair and adds it to the

solution, as long as possible. After every step we delete the edges of the

path used, in order to avoid collisions with paths chosen later.

However, the idea is not as powerful as one might hope: In each step

there could exist many short paths to choose from, and we may easily miss

a good one, since we only take length as selection criterion. But at least

we can prove the O(
√
m) factor, as follows. Let I∗ and I denote the set

of indices i of the pairs (si, ti) connected by the optimal and the greedy

solution, respectively. Let P ∗i and Pi denote the selected paths for index i.

The analysis works with case a distinction regarding the length: We call a

1

path with at least
√
m edges long, and other paths are called short. Let

I∗s and Is be the set of indices i of the pairs (si, ti) connected by the short

paths in I∗ and I, respectively.

Since only m edges exist, I∗ can have at most
√
m long paths. Consider

any index i where P ∗i is short, but (si, ti) is not even connected in I. (This is

the worst that can happen to a pair, hence our worst-case analysis focusses

on this case.) The reason why the greedy algorithm has not chosen P ∗i must

be that some edge e ∈ P ∗i is in some Pj chosen earlier. We say that e

“blocks” P ∗i . We have |Pj | ≤ |P ∗i | ≤
√
m. Every edge in Pj can block at

most one path of I∗. Hence Pj blocks at most
√
m paths of I∗. The number

of such particularly bad indices i is therefore bounded by |I∗s \ I| ≤ |Is|
√
m.

Finally some simple steps prove the claimed approximation ratio:

|I∗| ≤ |I∗ \ I∗s |+ |I|+ |I∗s \ I| ≤
√
m+ |I|+ |Is|

√
m ≤ (2

√
m+ 1)|I|.

An Approximation Scheme for Knapsack

So far we have seen some approximation algorithms whose approximation

ratio on an instance is fixed, either an absolute constant or depending on

the input size. But often we may be willing to spend more computation

time to get a better solution, i.e., closer to the optimum. In other words, we

may trade time for quality. A polynomial-time approximation scheme

(PTAS) is an algorithm where the user can freely decide on some accuracy

parameter ε and gets a solution within a factor 1 + ε or 1 − ε of optimum,

and within a time bound that is polynomial for every fixed ε but grows as

ε decreases. The actual choice of ε may then depend on the demands and

resources. A nice example is the following Knapsack algorithm.

In the Knapsack problem, a knapsack of capacity W is given, as well as

n items with weights wi and values vi (all integer). The problem is to find

a subset S of items with
∑

i∈S wi ≤W (so that S fits in the knapsack) and

maximum value
∑

i∈S vi. Define v∗ := max vi.

You may already know that Knapsack is NP-complete but can be solved

by some dynamic programming algorithm. Its time bound O(nW) is polyno-

mial in the numerical value W , but not in the input size n, therefore we call it

pseudopolynomial. (A truly polynomial algorithm for an NP-complete prob-

lem cannot exist, unless P=NP.) However, for our approximation scheme we

need another dynamic programming algorithm that differs from the most

natural one, because we need a time bound in terms of values rather than

weights. (This point will become more apparent later on.) Here it comes:

2

Define OPT (i, V) to be the minimum (necessary) capacity of a knapsack

that contains a subset of the first i items, of total value at least V . We can

compute OPT (i, V) using the OPT values for smaller arguments, as follows.

If V >
∑i−1

j=1 vj then, obviously, we must add item i to reach V . Thus we

have OPT (i, V) = wi +OPT (i−1, V −vi) in this case. If V ≤
∑i−1

j=1 vj then

item i may be added or not, leading to

OPT (i, V) = min(OPT (i− 1, V), wi +OPT (i− 1,max(V − vi, 0))).

Since i ≤ n and V ≤ nv∗, the time is bounded by O(n2v∗). As usual in

dynamic programming, backtracing can reconstruct an actual solution from

the OPT values.

Now the idea of the approximation scheme is: If v∗ is small, we can

afford an optimal solution, as the time bound is small. If v∗ is large, we

round the values to multiples of some number and solve approximately the

given problem. The point is that we can divide all the rounded values by

the common factor without changing the solution sets, which gives us again

a small problem. In the following we work out this idea precisely. We do not

specify what “small” and large” means in the above sketch, instead, some

free parameter b > 1 controls the problem size.

First compute new values v′i as follows: Divide vi by some fixed b and

round up to the next integer: v′i = dvi/be. Then run the dynamic program-

ming algorithm for the new values v′i rather than vi.

Let us compare the solution S found by this algorithm, and the op-

timal solution S∗. Since we have not changed the weights of elements,

S∗ still fits in the knapsack despite the new values. Since S is optimal

for the new values, clearly
∑

i∈S v
′
i ≥

∑
i∈S∗ v′i. Now one can easily see:∑

i∈S∗ vi/b ≤
∑

i∈S∗ v′i ≤
∑

i∈S v
′
i ≤

∑
i∈S(vi/b + 1) ≤ n +

∑
i∈S vi/b. This

shows
∑

i∈S∗ vi ≤ nb +
∑

i∈S vi, in words, the optimal total value is larger

than the achieved value by at most an additional amount nb.

Depending on the maximum value v∗ we choose a suitable b. By chosing

b := εv∗/n, the above inequality becomes
∑

i∈S∗ vi ≤ εv∗ +
∑

i∈S vi. Since

trivially
∑

i∈S∗ vi ≥ v∗, this becomes
∑

i∈S∗ vi ≤ ε
∑

i∈S∗ vi +
∑

i∈S vi, hence

(1 − ε)
∑

i∈S∗ vi ≤
∑

i∈S vi. In words: We achieve at least a 1 − ε fraction

of the optimal value. The time is O(n2v∗/b) = O(n3/ε). Thus we can

compute a solution with at least 1− ε times the optimum value in O(n3/ε)

time.

3

For any fixed accuracy ε this time bound is polynomial in n (not only

pseudopolynomial as the exact dynamic programming algorithm). However,

the smaller ε we want, the more time we have to invest.

The presented approximation scheme is even an FPTAS, which is stronger

than a PTAS. Here is the definition: A fully polynomial-time approxi-

mation scheme (FPTAS) is an algorithm that takes an additional input

parameter ε and computes a solution that has at least 1− ε times the opti-

mum value (for a maximization problem), or at most 1+ε times the optimum

value (for a minimization problem), and runs in a time that is polynomial

in n and 1/ε.

4

