
Advanced Algorithms Course.

Lecture Notes. Part 11

Randomization Continued

Chernoff Bounds

This is a very useful general tool to bound the probabilities that certain

random variables deviate much from their expected values. Here we will

derive one version of this bound and then apply it to a simple load balancing

problem.

Let X be sum of n independent 0-1 valued random variables Xi taking

value 1 with probability pi. Clearly E[X] =
∑
i pi. For µ := E[X] and δ > 0

we ask how likely it is that X > (1 + δ)µ, in other words, that X exceeds

the expected value by more than 100δ percent.

Since function exp is monotone, this inequality is equivalent to exp(tX) >

exp(t(1+δ)µ) for any t > 0. Exponentiation and this free extra parameter t

seem to make things more complicated, but we will see very soon why they

are useful.

For any random variable Y and any number γ > 0 we have that E[Y ] ≥
γPr(Y > γ). This is known as Markov’s inequality and follows directly from

the definition of E[Y ]. For Y := exp(tX) and γ = exp(t(1 + δ)µ) this yields

Pr(X > (1 + δ)µ) ≤ exp(−t(1 + δ)µ)E[exp(tX)].

Due to independence of the terms Xi we have

E[exp(tX)] = E[exp(
∑
i

tXi)] = E[
∏
i

exp(tXi)] =
∏
i

E[exp(tXi)]

=
∏
i

(pie
t + 1 − pi) =

∏
i

(1 + pi(e
t − 1)) ≤

∏
i

exp(pi(e
t − 1))

= exp

(
(et − 1)

∑
i

pi

)
≤ exp((et − 1)µ).

1



This gives us the bound exp(−t(1+δ)µ) exp((et−1)µ). We can arbitrarily

choose t. With t := ln(1 + δ) our bound reads as
(

eδ

(1+δ)(1+δ)

)µ
.

The base depending on δ looks a bit complicated, however: Using eδ ≈
1 + δ one can see that the base is smaller than 1. For any fixed deviation δ

the base is constant, and the bound decreases exponentially in µ. The more

independent summands Xi we have in X, the smaller is the probability of

large deviations. A direct application of the simple Markov inequality would

be much weaker (therefore the detour via the exponential function).

Load Balancing

In order to show at least one application, consider the following simple load

balancing problem: m jobs shall be assigned to n processors, in such a

way that no processor gets a high load. In contrast to the Load Balancing

problem we studied earlier, no central “authority” assigns jobs to processors,

but every job chooses a processor by itself. We want to install a simple

rule yet obtain a well balanced allocation. (An application is distributed

processing of independent tasks in networks.) To make the rule as light-

weight as possible, let us choose for every job a processor randomly and

independently. The jobs need not even “talk” to each other and negotiate

places. How good is this policy?

We analyze only the case m = n. What would you guess: How many

jobs end up on the same processor? To achieve clarity, consider the random

variable Xi defined as the number of jobs assigned to processor i. Clearly

E[Xi] = 1. The quantity we are interested in is Pr(Xi > c), for a given

bound c. Since Xi is a sum of independent 0-1 valued random variables

(every job chooses processor i or not), we can apply the Chernoff bound.

With δ = c− 1 and µ = 1 we get immediately the bound ec−1/cc < (e/c)c.

But this is only the probability bound for one processor. To bound the

probability that Xi > c holds for some of the n processors, we can apply the

union bound and multiply the above probability with n. Now we ask: For

which c will n(e/c)c be “small”?

At least, we must choose c large enough to make cc > n. As an auxiliary

calculation consider the equation xx = n. For such x we can say:

(1) x log x = log n and

(2) log x+ log log x = log log n.

2



Here we have just taken the logarithm twice. Equation (2) easily implies

log x < log logn < 2 log x.

Division by (1) yields

1/x < log log n/ log n < 2/x.

In other words, xx = n holds for some x = Θ(log n/ log log n).

Thus, if we choose c := ex, our Chernoff bound for every single processor

simplifies to 1/xex < 1/(xx)2 = 1/n2. This finally shows: With probability

1− 1/n, each processor gets O(log n/ log log n) jobs. This answers our ques-

tion: Under random assignments, the maximum load can be logarithmic,

but it is unlikely to be worse.

For m = Θ(n log n) or more jobs, the random load balancing becomes

really good. Then the load is larger than twice the expected value Θ(log n)

only with probability below 1/n2. Calculations are similar as above.

3


