
Advanced Algorithms Course.

Lecture Notes. Part 1

These notes are based on Kleinberg, Tardos, Algorithm Design and also

influenced by other material.

• The notes are an additional service. They should be considered only

as concise summaries of the lectures and a mnemonic aid. It was not

the intention to write another textbook!

• Many details are omitted (we suppose that you have already a good

basic understanding of algorithms), and no diagrams or calculation

examples are included.

• The contents follow the lectures, but they may differ from what was

exactly said in class.

1



Approximation Algorithms

or: “My problem is NP-complete – what now?”

Load Balancing

Suppose that n jobs with processing times tj have to be done, and every job

must be assigned to one of m machines. Let Ti be the load, i.e., the total

processing time of machine i. The goal is to compute an assignment that

minimizes T := maxi Ti.

In the context of scheduling problems where the jobs are executed one

by one on the assigned machines, we call T the makespan. It is the time

when all jobs are ready, and the problems asks to finish the given pile of

jobs as early as possible. In the same problem with human workers rather

than machines, good load balancing is simply a matter of fairness.

This problem is NP-complete already for m = 2 machines, as can be

shown by a simple polynomial-time reduction from Subset Sum. (We assume

that you already know that Subset Sum is NP-complete.) Therefore we look

for algorithms that give good approximate solutions in polynomial time.

A natural greedy algorithm passes through the jobs and assigns every

job to a machine with currently smallest load. Due to NP-completeness,

this is not always optimal, and in fact, there are strikingly small explicit

counterexamples: Consider m = 2 machines and processing times 3, 3, 2, 2, 2.

Here the optimal makespan is 6, whereas the greedy solution yields 7. Still

this might be acceptable in practice.

The question arises how much the greedy solution is away from an op-

timal solution in the worst case. Such worst-case results give reliability: In

the same way as worst-case time bounds are guarantees on the runtimes,

worst-case bounds on the value of a solution guarantee a certain quality.

In order to analyze the quality of approximation algorithms, we focus on

the ratio of algorithmic and optimal solution, T/T ∗ in our case. (Think why

this is meaningful, whereas it would be rather pointless to analyze T − T ∗.)

The exact ratio T/T ∗ is too complicated, however a practical approach to

get guarantees is to prove a lower bound on the optimal solution T ∗ and

an upper bound on the algorithmic solution T . Then, clearly, T/T ∗ is at

most the ratio of these bounds. (For maximization problems we can proceed

similarly.)

For our Load Balancing problem, trivial lower bounds on T ∗ are any

tj , and
∑

tj/m. Now we use them to prove T ≤ 2T ∗. The idea is to

2



consider a machine i that finally has the maximum load Ti = T , and the job

j assigned last to this machine i. Before job j was assigned, all machines

had a load at least Ti − tj (because job j has been assigned to machine

i with the currently smallest load). It follows
∑

k Tk ≥ m(Ti − tj), hence

T − tj = Ti − tj ≤
∑

k Tk/m =
∑

l tl/m ≤ T ∗. Together this finally yields

T ≤ (T − tj) + tj ≤ T ∗ + T ∗.

This analysis is as good as it could be: There exist instances where T

is actually nearly 2T ∗. A nasty case is many short jobs (that the greedy

algorithm assigns in a balanced way) followed by one long job (that must

be assigned to one machine, thereby destroying the balance). The obvious

weakness of the greedy algorithm is that it considers the jobs in the given

order. We can easily improve that. Intuitively, the shortest jobs should be

the last in the sequence, such that they cannot stick out too much. We first

sort the jobs such that t1 ≥ . . . ≥ tn, then we apply the greedy algorithm.

In fact, we can now prove a better approximation guarantee: T ≤ 1.5T ∗.

Again we try and find lower and upper bounds on T ∗ and T , respectively.

As the algorithm became more clever, the (better) bounds are a little more

tricky as well. First we can suppose m < n, otherwise the Load Balancing

problem is trivial. Since at least two of the m + 1 longest jobs must be put

on the same machine, we have T ∗ ≥ 2tm+1. From now on we reuse notations

from the previous proof. If machine i with the maximum final load T does

job j only, then the solution is optimal, since T = tj ≤ T ∗. It remains the

case that our algorithm has assigned two or more jobs to machine i. Since

job j was assigned last to machine i, we have j ≥ m + 1. (Think a little.)

Hence tj ≤ tm+1 ≤ 0.5T ∗. And the previous analysis, which is still true,

gave T − tj ≤ T ∗. Together this yields T ≤ 1.5T ∗.

“I’m so proud: I have finished my puzzle in only 2 years. On the

package it says 3-4 years.”

Center Selection

Let S be a set of n sites (points) in a metric space equipped with a distance

function dist, and k a given number. The goal is to select a set C of k

centers (which are also points in the same metric space) so as to minimize

the maximum distance r(C) of a site to the nearest center. Think of placing

shops, fire stations, radio stations, etc., in a region. We call r(C) the covering

radius and define r = minC maxs∈S minc∈C dist(s, c), where C varies over

all sets of k points.

3



In contrast to Load Balancing, it is already not so obvious to get an

idea for a good greedy approximation algorithm. But, surprisingly, a little

extra information would be extremely helpful: Assume for the moment that

a little bird comes and tell us the optimal value r (but not the solution C).

As we will see, this would make the problem much easier. (Of course, later

we will have to drop this crazy assumption.) We say that a center c “covers”

a site s, with covering radius r, if dist(c, s) ≤ r.

Now we devise a simple greedy algorithm and analyze it at the same

time. In the beginning all sites are uncovered. Consider any uncovered site

s. We know that, in an optimal solution, some center c covers s. Instead

of this unknown c we choose s itself as a center! By the triangle inequality,

all sites covered by c are also covered by s if we enlarge the covering radius

to 2r. We repeat this step until all sites are covered (now with radius 2r).

Since the unknown optimal solution needed k centers, our greedy solution

uses at most k centers as well. If some sites remain uncovered after k steps,

this only indicates that our assumed r was too small. Thus we have an

algorithm with approximation ratio 2, under the preliminary assumption of

a known optimal covering radius r.

But in reality we do not have this extra information. So how do we

determine r? A tempting idea is binary search, but since the search space

consists of real numbers, it is not clear how many search steps we would need.

The trick is much simpler: Instead of doing binary search we revise the above

algorithm a little. Note that our preliminary algorithm may choose, in each

step, an arbitrary site s whose distance to all centers already selected is

larger than 2r. And this gives the idea:

In each step, we consider the site s having the largest minimum distance

to all centers already selected. Then the above analysis is still correct, but

we do not need prior knowledge of r, since the modified algorithm does

not use the value r in any way. Now we have a real algorithm for Center

Selection, with approximation ratio 2.

4


