
Advanced Algorithms. Assignment 3

Exercise 5.
Suppose that we have a source of random bits, that is, we can generate
a random number 0 or 1, each with probability 1/2, and we can do this
independently and as often as we want. You can assume that generating
each random bit costs O(1) time.

(a) Now we want to use these random bits to generate a random integer
in the range {1, . . . , n}, where every outcome has probability 1/n. Give an
algorithm for this task. Note that it must work for every given positive
integer n (not only, e.g., for powers of 2, which is a simple case). What is
the expected time that you need? It should be a “small” function of n, and
your analysis should be rigorous, without handwaving arguments.

(b) As a more complex task, we want to generate a random vector of m bits,
where exactly k bits are 1 and m − k bits are 0. That means, each of the(m
k

)
such vectors must be produced with the same probability 1/

(m
k

)
. But

the expected time must be polynomial in m. Therefore you cannot simply
list all these vectors and apply your method from (a) with n :=

(m
k

)
, as

this would take exponential time. Give instead a fast algorithm (there are
several possible approaches), explain why it correctly solves the problem,
and again, do a rigorous time analysis.

The assignments end with some garbage:

Exercise 6.
A modern waste collection system used in some cities consists of pipes that
are connected like the edges of a tree1. The root of the tree contains a waste
collection station, every leaf contains an inlet where people can dispense
their garbage, and every inner node contains valves to the incident pipes.
All valves can be opened and closed individually.
During an emptying process, the waste is transported from the leaves to the
root by air suction, through the open pipes. However, every pipe has a given
capacity, and the total amount of waste going through the pipe must not
exceed its capacity. An inlet can only be emptied completely (not partially),
or it is not emptied now at all (and has to wait for a future process). Due
to the limited pipe capacities, not all inlets can be emptied at once. The

1The graph is meant here and in the following, not a real tree.

1



system must carefully select a subset of inlets and open the pipes on the
ways from these inlets to the station. The amount of waste in every inlet is
measured by a sensor. It is desirable to collect as much waste as possible in
one process.

Actually you can skip the entire text until this point. Now we describe the
resulting problem formally. We are given a rooted binary tree of n nodes,
with edge capacities ce and with weights xv at the leaves v. Let Le denote
the set of all leaves in the subtree rooted at edge e (the “subtree below e”,
so to speak). We want to find a subset S of leaves such that

∑
v∈S xv is

maximized, but
∑

v∈S∩Le
xv ≤ ce holds for every edge e. It is assumed that

all ce and xv are non-negative integers; let k be their maximum.

�
�
�@

@
@

�
�
�@

@
@

1 2

22 2

2 2

3

For example, in the tree displayed here, an optimal solution is to choose the
first and third leaf and thus collect an amount of 1 + 2 = 3. If the second
leaf were chosen, it would block the two others.

Develop an algorithm for this problem, using dynamic programming on trees.
It should run in O(nk2) time. Of course, you should also explain your
solution.

Some advice: At first glance this looks like a flow problem, but you may
recognize why a maximum-flow algorithm is not applicable here. Next, it
may take some time to construct a dynamic programming “rule” that works.
(Do not give up early.) Note that we have at most four choices at each node:
take the waste from the left edge, or from the right edge, or from both, or
from none. Think carefully: which information must be propagated upwards
in the tree, in order not to miss an optimal solution in the end? You don’t
have to find a “nice” formula; a clear verbal desscription is also fine. Check
whether your algorithm really yields the optimal result on small examples
like the one above.

2


