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5 The Primal-Dual Method

Originally designed as a method for solving linear programs, where it reduces weighted
optimization problems to simpler combinatorial ones, the primal-dual method (PDM)
has received much attention over the last years, as it can be generalized to more
complex optimization settings and can be used to derive approximation schemes for
NP-hard problems. PDM is a vast topic, and we can only give a very basic idea here.
There are many flavors, versions and extensions to it.1 In its most basic form, the main
principle is to improve a feasible dual solution until the primal satisfies complementary
slackness conditions, indicating optimality in cases where strong duality holds, or an
approximate solution where it doesn’t.

5.1 The primal-dual method for linear programs

Assume we have a primal minimization and a dual maximization problem in standard
form, i.e.

min
x∈Rn

cᵀx

s.t. Ax≥ b

x≥ 0

and

max
y∈Rm

bᵀy

s.t. Aᵀy≤ c

y≥ 0

Recall the property of complimentary slackness for optimal solutions x∗,y∗ in LP:

Primal complimentary slackness (PCS) : At least one of x∗j = 0 or
∑

i ai j y∗i = c j
must hold.

Dual complimentary slackness (DCS) : At least one of y∗i = 0 or
∑

j ai j x
∗
j = bi must

hold.

The central observation is that if strong duality holds for all constraints in the primal
and the dual for some y, that y is in fact an optimal solution. Hence, CS can be used as
a certificate for optimality. This leads to the original version of the PDM for LPs, which
can be summarized thusly:

1If you are eager to find out more, there is an extensive recent review (http://ieeexplore.ieee.org/
document/7298566/), with a free preprint (i.e. not peer-reviewed) version (https://arxiv.org/abs/1406.
5429).

1. Find some feasible dual solution y.

2. Given y, find some x that minimizes the violation of complementary slackness in
the primal.

3. If CS holds, y is optimal, and PDM terminates.

4. Otherwise, change y so as to improve the dual objective bᵀy, and go to 2. Note
that at this point, the solution x obtained in step 2. is not necessarily feasible and
might violate primal constraints!

Obviously, we require some way to find x in step 2., and a way to measure whether
complementary slackness holds, and if not, to what degree it is violated. Given some
feasible dual solution y, let

I :=
�

i
�

� yi = 0
	

be the set of all indices for which the dual variables are zero, and

J :=

(

j

�

�

�

�

�

m
∑

i=1

ai j yi = c j

)

the set of all indices for which the dual constraints are binding. Obviously, I serves
as an index for those primal constraints for which DCS holds because their associated
dual variable yi is zero, and J denotes the dual constraints that are binding for a given
y. The complements of those sets are denoted by I û and J û. J û is the set of indices j
for which the dual constraints are not binding, and hence x j would have to be zero for
PCS to hold. Likewise, I û is the set of indices i for which yi > 0, and this the primal
constraints would have to be binding in order for DCS to hold. The idea is therefore to
construct a new optimization problem called the restricted primal, in which we try to
reduce the slackness in the primal constraints and the “non-zeroness” of the primal
variables x j , j ∈ J û as much as we can. If and only if they are both zero, complementary
slackness holds and y was an optimal solution. Using slack variables si to capture
primal constraint violations, the restricted primal (RP) is defined as

fRP =min
∑

i∈Iû

si +
∑

j∈J û

x j

s.t. ∀i ∈ I :
∑

j ai j x j ≥ bi

∀i ∈ I û :
∑

j ai j x j − si = bi

s≥ 0
x≥ 0
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In case the RP has a non-zero optimal value, we need to find a new feasible dual
variable that leads to a better dual objective, thus getting us closer to an optimal
solution and thus closer to full CS. We derive the restricted dual (RD) by our usual
scheme,

min





0
1
1





ᵀ



xJ
xJ û

s





0 0 0

≥ ≥ ≥

xJ xJ û s
0 ≤ zI AI J AI J û O ≥ bI

maxbᵀz zIû AIûJ AIûJ û −E = bIû

≥ ≥ ≥

0 1 1

This leads to

fRD =maxbᵀz

s.t. ∀ j ∈ J :
∑

i ai jzi ≤ 0
∀ j ∈ J û :

∑

i ai jzi ≤ 1
∀i ∈ I : zi ≥ 0
∀i ∈ I û : zi ≥ −1

Notice that the last constraint does not seem to appear in the scheme; while the primal
equality constraint imposes no restrictions on yi for i ∈ I û, due to −E we also have
−zi ≤ 1 and therefore zi ≥ −1.

If complementary slackness does not hold, we know that the restricted dual has a
solution bᵀz > 0. Our goal is to find some value ε such that bᵀ(y+ εz) > bᵀy, thus
improving the dual objective. If

ε≤min
i∈Iû

�

−
yi

zi

�

�

�

�

zi < 0

�

then z ≥ 0, preserving the non-negativity constraint. Also, if

ε≤min
j∈J û

(

c j −
∑

i ai j yi
∑

i ai jzi

�

�

�

�

�

∑

i

ai jzi > 0

)

dual constraints are preserved. Therefore, choosing the smaller of those values takes
us from a feasible dual solution y to a better feasible dual solution y+ εz.

1. Find some feasible dual solution y.

2. Given y, formulate the restricted primal and find the minimum value of its objective
fRP .

3. If fRP = 0, complementary slackness holds and y is optimal. Return.

4. Otherwise, formulate the restricted dual. Determine the best ε and change y to
y+ εz so as to improve the dual objective bᵀy, and go to step 2.

One of the reasons to employ this sort of algorithm is that the cost c vanishes. This
turns a weighted problem into an unweighted problem, and step 2 can potentially be
solved using efficient combinatorial optimization algorithms that do not rely on linear
programming.

5.2 PDM for approximation schemes

The primal dual method can be used to derive approximation schemes for NP-hard
problems. As a motivating example, we consider the following pair of discrete opti-
mization problem: Let G = (V, E) be an undirected graph with vertex set V and edge
set E. The vertex cover problem asks to find the smallest subset Vopt ⊆ V such that each
edge in G is incident to at least one node in Vopt. Its ILP formulation is straightforward:

min
∑

v∈V xv

s.t. ∀(v, w) ∈ E : xv + xw ≥ 1

xv ∈ {0,1}

Its dual is the maximum matching problem, which asks to find a maximum set of edges
such that no two edges share a node. It can be written as

max
∑

e∈E ye

s.t. ∀v ∈ V :
∑

w:(v,w)∈E

yvw ≤ 1

ye ∈ {0,1}

If we were to write this as a scheme, the matrix A would be the transpose of the node-
edge incidence matrix. A node or edge is selected if its variable is 1, and deselected if
it is 0.

In bipartite graphs, A is TUM, and thus we can solve both vertex cover as well
as maximum matching in polynomial time. Specifically, maximum matching can be
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seen as a special case of s-t-flow, by adding source and sink nodes as well as putting
directionality on the edges such that they all point towards the second vertex partition.
Strong duality therefor provides a simple proof for the following important result:

Theorem 1 (Kőnig’s theorem). In a bipartite graph, the number of edges in a maximum
matching equals the number of nodes in a minimum vertex cover.

As a non-mandatory exercise, try and see how the PDM for LPs applies in this
case. Unfortunately, for general graphs, vertex cover is an NP-hard problem, whereas
maximum matching is solvable in polynomial time, e.g. using Edmond’s algorithm. We
can not expect strong duality to hold. As we want to cover as many edges with as few
nodes as possible, there is an obvious greedy heuristic we could try in order to find a
good approximation. Let’s call it the naïve heuristic:

1. Pick the node v with the highest degree deg v, i.e. the highest number of incident
edges.

2. Add v to the solution, then delete v and all its incident edges.

3. Repeat until no edges are left.

The question arises whether the naïve heuristic comes with any performance guarantees.
To that end, let us assume w.l.o.g. that the nodes and edges are numbered in the order
in which they are selected, so v1 is selected before v2, and e1 before e2. vk and its
incident edges are selected in the k-th iteration. We are trying to minimize the the total
number of selected nodes, hence our objective function is a cost function, with optimal
value f ∗. Selecting a node adds 1 to the total cost. Equivalently, we can distribute
the cost of selecting a node equally among all remaining edges incident to that node,
hence in iteration k, each edge that gets deleted incurs a cost of

1
deg(vk)

.

Assume there are n nodes and m edges. Assume edge e j is incident to vk and removed
during the k-th iteration. We want to obtain a bound on how much cost is incurred
by removing e j . Since larger node degrees means lower edge costs, we want to find a
lower bound on the largest degree still in the graph: Before entering the k-th iteration,
there are at least m− j + 1 uncovered edges left in the graph. Obviously, if we could
solve vertex cover optimally, we would require no more than f ∗ nodes to cover these
remaining edges. We therefore have to distribute m− j + 1 edges among (at most) f ∗

nodes. This leads to a very basic but important result from Ramsey theory: if we were
to have n pigeonholes and m pigeons, what is the minimum number of pigeons in the
most crowded hole?

Theorem 2 (Pigeonhole principle). In any partition of a set of m elements into n blocks,
there exists a block with at least

�

m
n

�

elements.

This means that somewhere in the graph, there exists a node v with

deg(v)≥
�

m− j + 1
f ∗

�

≥
m− j + 1

f ∗
,

so the cost of removing e j is at most

f ∗

m− j + 1
.

Over all m iterations, the cost incurred by the naïve heuristic, fNH , is therefore bounded
as

fNH ≤
m
∑

j=1

f ∗

m− j + 1
=

m
∑

j=1

f ∗

j
= Hm f ∗

where Hm is the m-th harmonic number. Since2 Hm ∈ O{log m} ⊆ O{log(n2)} =
O{2 log n}= O{log n}, the naïve heuristic is an O(log n)-approximation of vertex cover.
That’s not very exciting news: even for moderately sized problems with 1000 nodes,
the approximation ratio can be almost seven! Even worse, the ratio grows with the
problem size.

This case may serve as an example that sometimes the obvious approach is not as
good a choice as you might think. Instead, we will turn to using the PDM to derive a
much better heuristic. For approximation schemes for problems like vertex cover, we
don’t have strong duality, and complementary slackness does not hold for a primal and
its dual simultaneously. Instead, the PDM is modified so that only primal complimentary
slackness is enforced, whereas dual complimentary slackness is relaxed: instead of
requiring constraints for non-zero variables to hold with equality, one can require
the slack to be within a certain bounded interval. This leads to the following relaxed
complimentary slackness conditions:

Relaxed PCS : At least one of x j = 0 or
∑

i ai j yi ≥
c j

α must hold.

Relaxed DCS : At least one of yi or
∑

j ai j x j ≥ β bi must hold.

So we have c
α
≤ Aᵀy≤ c

cᵀx≤ αyᵀAx

2We use O{ f } for the set of functions growing not faster than f , and O( f ) for an element from this set.
In practice, the two are often not distinguished.
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as well as
b≤ Ax≤ βb

yᵀAx≤ βbᵀy

αyᵀAx≤ αβbᵀy

As before, for a primal minimization problem, weak duality implies that bᵀy ≤ cᵀx.
Combining the above yields

bᵀy≤ cᵀx≤ αβbᵀy

In other words, if relaxed complimentary slackness holds, the optimal primal solution
is between the optimal dual solution and a constant factor of that solution, hence αβ
serves as an approximation ratio. We now have a principled way to derive an approx-
imation heuristic for vertex cover: The primary complementary slackness condition
involves primary node variables and dual constraints, so if xv > 0, then PCS is enforced
by requiring

∑

w:(v,w)∈E

yvw = 1

On the other hand, dual complimentary slackness, involving the dual edge variables
and primal constraints, says that if ye > 0 for some e = (v, w), we must have

xv + xw = 1

However, as we said before, in the primal dual method, only the PCS is enforced, but
the DCS is relaxed if necessary. The PDM proceeds like this:

1. Set y= 0, except for one entry ye = 1. This is a feasible matching, as it obeys all
dual constraints. Also, set x = 0; note this is not a feasible primal solution, as it is
not a vertex cover and violates primal constraints.

2. We now have xe = 1> 0 for some e := (v, w). This means that the dual constraints
v, w are binding (α = 1) and their PCS is satisfied. This allows us to set xv = xw = 1,
as they don’t have to be zero anymore for PCS to hold. We thereby decrease the
number of violated primal constraints, as we added covering nodes and xv+xw ≥ 1
now holds. However, DCS holds only in its relaxed form, as xv + xw = 2≥ 1, so
β = 2. This means the algorithm is a 2-approximation of vertex cover!

3. If no more edge can be added, return.

4. Otherwise, pick another edge that does not share a node with one we selected
before. This improves the dual objective, since the matching gets larger. The
primal solution might still not be a vertex cover and thus be infeasible. Go to step
2.
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