
TDA206/DIT370 DISCRETE OPTIMIZATION 2017 ·PERIOD 3 ·WEEK III

4 Integer Linear Programming (ILP)

An integer linear program, ILP for short, has the same form as a linear program (LP).
The only difference is that the feasible solutions are restricted to be integer vectors, i.e.
x ∈ Zn instead of x ∈ Rn. All other elements such as A can still have real numbers as
components. While it might seem intuitively like this should be a much easier problem
(after all, we don’t have infinitely many feasible values anymore), solving ILP is in fact
much harder1! Part of the reason is that the feasible set is not convex anymore, since it
consists of finitely many disjunct points.

If an LP has optimal solutions, then there will be an optimal solution which corre-
sponds to one of the vertices in the feasible polytope. However, since the constraints in
an ILP can be exactly the same as in the LP, there is no guarantee that this vertex will
be integer. Therefore, obviously, f ∗ILP ≤ f ∗LP for a maximization problem, and f ∗ILP ≥ f ∗LP
for a minimization problem. This also implies that in ILP the duality gap (the differ-
ence between a primal and a dual optimal solution) is not zero in general. Since an
approximate solution is better than no solution at all, sometimes one solves the LP
form of an ILP and then rounds to the closest feasible integer solution; this kind of
approximation is called LP relaxation. However, that approximation can be arbitrarily
bad, and it is easy to construct such cases (Can you find a way to do this?).

4.1 ILP with strong duality

Before we start dealing with general ILP, we look at an important special case: if the
constraints in an ILP are such that they intersect at an integer coordinate for the optimal
value, we can actually use the LP relaxation to solve the ILP optimally! Furthermore,
the duality gap is zero in that case, and the problem exhibits strong integer duality.

The question then arises how we can know whether or not a given ILP can be solved
optimally by its LP relaxation. In theory, only the optimizing vertex would have to
be integer. However, when we want to decide whether an LP relaxation will yield an
optimal ILP solution, we cannot know which vertex corresponds to the optimal solution
without solving the program explicitly. Therefor, it would be nice to guarantee that all
vertices are integer, and hence the program works for arbitrary objectives. An example

1In the language of complexity theory, LP is in P, while ILP is NP-hard! We’ll get to the details in a later
lecture

0 2 4 6 8 10 12 14
x1

0

2

4

6

8

10

12

14

x
2

Figure 1: A feasible polytope with integer vertices (this is not a TUM). In cases like
this, the LP relaxation solves the ILP optimally for any objective function.

of such a polytope is given in fig. 1. It is described by the inequality system












1 2
2 1
1 −1
0 −1
−3 −1













x≤













25
26
7
−2
−20













In Rn, the location of a vertex is the intersection of n hyperplanes which correspond
to the boundaries of halfspaces defined in the constraints. In other words, each vertex
is the unique solution of some system of n linear equations (e.g. in R2, we need to
intersect two lines to get a single point, in R3, we need to intersect three non-parallel
planes to get a point, but two planes only get us a line). So there is some invertible
matrix S such that Sx = b and x has an integer solution (it has to be invertible because

2017-02-11 ·22:53 1



TDA206/DIT370 DISCRETE OPTIMIZATION 2017 ·PERIOD 3 ·WEEK III

otherwise we could not solve x = S−1b). Whether or not this holds depends on b;
indeed, if we changed b in fig. 1, the lines would move and their intersections might
become non-integer. So for general problems, our safest bet is a matrix which has
integer solutions x for all integer b. Such a matrix is called unimodular.

Definition 1 (Unimodular matrix). An integer square matrix S ∈ Zn×n is called a
unimodular matrix (UM) iff detS= ±1.

Note that this implies that S is invertible (non-singular, i.e. S−1 exists), as detS 6= 0.

Theorem 1. Let S ∈ Zn×n. Consider the system of linear equations Sx = b. Then x is
integer (x ∈ Zn) for any b ∈ Zn iff S is UM.

Proof. By Cramer’s rule,

x i =
detSi

detS
where Si is S with the i-th column replaced by b, which for general b ∈ Zn holds
only if detS = ±1. Conversely, let bt be a vector of zeros, with 1 at its t-th position.
Since x = S−1b for all integer b, we must have x = S−1bt for all t, in which case
the t-th column of S−1 is x, and hence integer. Hence all columns of S−1 are integer,
and therefore detS−1 is integer. Since detS−1 = (detS)−1, (detS)(detS−1) = 1, and
therefore detS= detS−1 = ±1. So S must be UM.

This gets us almost to where we want to be. Consider the primal constraints

Ax≤ b

x≥ 0

We can rewrite this as a concatenation of two matrices,
�

A
−E

�

x≤
�

b
0

�

where E is the identity matrix. This neatly describes the feasible polytope using a single
matrix. Now, obviously, each vertex is described by a system of linearly independent
linear equations A◦x= b◦, where2

A◦ v
�

A
−E

�

and the corresponding entries

b◦ v
�

b
0

�

2We use v to denote submatrices and subvectors.

As each vertex is supposed to be integer, each A◦ must be unimodular. There is a
problem though: some intersections are not parts of the polytope, and would not
necessarily have to be UM. Consider the intersection in the vicinity of (7,0) in fig. 1
(Which constraints define this intersection?). It is not integer, which is no problem as
it is not a vertex in the polytope. However, if we dropped the constraint −x2 ≤ −2, it
would be part of the polytope, and yield a non-integer solution for certain objectives.
Identifying which intersection points are polytope vertices and thus which submatrices
have to be UM is not straightforward. Therefor, our safest bet is to simply require all
invertible submatrices to be unimodular. This leads to the following:

Definition 2 (Totally unimodular matrix). A matrix A is called a totally unimodular
matrix (TUM) iff every invertible submatrix S v A is unimodular. Equivalently, A is a
TUM iff for all its square submatrices S, detS ∈ {−1,0, 1}.

This implies that all entries are −1,0 or 1, since all submatrices of size 1× 1 have
to be UM as well, and det(a) = a. Note that this is not a sufficient condition, not all
matrices which only have entries like that are TUM.

So, whatever square submatrix we pick, it is either singular (determinant is 0), so it
cannot define a vertex, or it is invertible and defines a vertex, and we know that the
vertex is integer, since the submatrix is guaranteed to be unimodular. So ILP constraints
defined by a matrix A which is TUM guarantee that all vertices are integer, hence
an optimal solution to the LP relaxation is integer, and we can easily solve the ILP
using the LP. It should be noted that being TUM is a sufficient, but not a necessary
condition for integrality. Clearly, the polytope in fig. 1 is not a TUM, as its matrix
contains many entries that are not 0 or ±1, yet it only has integer vertices. TUM is a
rather restrictive condition, yet it occurs in practice, especially in optimization problems
involving directed graphs (or digraphs for short).

Before we look at some examples, I’d like to make duality a little more explicit. In
the last lectures we’ve looked at primal-dual pairs in standard form, and how we can
change constraints of a general LP to make it fit that form. However, we don’t always
want to do this, and it will be useful to talk about duality in a more general way. There
is an easy way to express duality for LPs in arbitrary form (fig. 2). Notice for instance
that the dual variable of an equality constraint is unconstrained (here: y2 and c2).
For a ≥-constraint in a maximization problem, the dual variable is non-positive (y3).
For inequality constraints that point into the opposite direction than what we would
expect from the standard form, the bounds of the dual variables also change direction
(here: x3 ≤ 0, because c3 is bounded from below instead of above, and y3 ≥ 0, because
b3 is bounded from above instead of below). Note that this general duality contains
our standard form as a special case. Some authors also consider the special case in
which all primal (dual) variables are unconstrained. These pairs are sometimes called

2017-02-11 ·22:53 2



TDA206/DIT370 DISCRETE OPTIMIZATION 2017 ·PERIOD 3 ·WEEK III

maxcᵀx
0 0

≥

≥

x1 x2 x3

0 ≤ y1 a11 a12 a13 ≤ b1
minbᵀy y2 a21 a22 a23 = b2

0 ≥ y3 a31 a32 a33 ≥ b3≥

= ≥

c1 c2 c3

Figure 2

asymmetric duals:

max cᵀx min bᵀy

s.t. Ax≤ b s.t. Aᵀy= c

y≥ 0

and

max cᵀx min bᵀy

s.t. Ax= b s.t. Aᵀy≥ c

x ≥ 0

Now let’s look at the maximum s-t flow problem. A very small instance3 of this
problem is shown in fig. 3. We have one source node s and one sink node t. Arcs
(edges) are labeled using capacities. We send some flow from the source to the sink
along the arcs. The flow x i j along an arc (i, j) must not exceed its capacity (capacity
constraints), and must not be negative (non-negativity constraint). The sum of flows
into a node must equal the sum of flows out of a node (flow balance constraint, due
to its applications in physics this is sometimes called mass conservation constraint). A
virtual edge (t, s) of infinite capacity has been added to allow the flow to be balanced.
Our objective is to maximize the flow from source to sink; due to flow balance, this is
equivalent to maximizing the flow from t to s. This problem is important for several
reasons. For integer capacities and flows, its LP relaxation is integer, and thus it can be
solved efficiently, as can its dual. It also turns out that the dual solution only requires

3This example is due to Marc Uetz.

s

v

t

3 1

2

∞

Figure 3

values in {0, 1} instead of Z, and is thus an instance of so-called 0-1 linear programming,
an important special case of ILP. The primal of our toy example has the form

max
x∈Zm

x ts

s.t. xsv + xst − x ts = 0

− xsv + xvt = 0

− xst − xvt + x ts = 0

xsv ≤ 3

xst ≤ 2

xvt ≤ 1

x ts ≤∞
x ≥ 0

where the first three constraints are the mass balance, the next four the capacity and
the last one the non-negativity constraint. Using the scheme for the dual in general

form, we can write this as in fig. 4. Notice that the matrix is a concatenation

�

A
E

�

of

the incidence matrix A of the network and the identity matrix E. The incidence matrix
of a directed graph of n nodes and m arcs is an {−1, 0, 1}n×m matrix, where av,r is 1 if
arc r points away from node v, −1 if it points towards v, and 0 otherwise. It turns
out that this matrix, as well as its concatenation with E is TUM and therefore observes

2017-02-11 ·22:53 3



TDA206/DIT370 DISCRETE OPTIMIZATION 2017 ·PERIOD 3 ·WEEK III

max









0
0
0
1









ᵀ







xsv
xst
xvt
x ts









0 0 0 0

≥ ≥ ≥ ≥

xsv xst xvt x ts

min





















0
0
0
3
2
1
∞





















ᵀ



















πs
πv
πt
αsv
αst
αvt
αts





















πs 1 1 0 −1 = 0
πv −1 0 1 0 = 0
πt 0 −1 −1 1 = 0

0 ≤ αsv 1 0 0 0 ≤ 3
0 ≤ αst 0 1 0 0 ≤ 2
0 ≤ αvt 0 0 1 0 ≤ 1
0 ≤ αts 0 0 0 1 ≤ ∞

≥ ≥ ≥ ≥

0 0 0 1

Figure 4

strong integer duality! The general form of this LP is

max cᵀx

s.t. Ax= 0

x ≤ b

x ≥ 0

From the representation above it can easily be seen that the dual is

min
α∈Zn

3αsv + 2αst +αvt +∞αts

s.t. αsv +πs −πv ≥ 0

αst +πs −πt ≥ 0

αvt +πv −πt ≥ 0

αts +πt −πs ≥ 1

α ≥ 0

Notice that, due to the equality constraints in the primal, π is unconstrained. The
general form is

min

�

0
b

�ᵀ �
π
α

�

s.t. [Aᵀ,Eᵀ]

�

π
α

�

≥ c

α ≥ 0

It is clear from the indices that αi j is a dual variable associated with arc (i, j), and πi is
a dual variable associated with node i. In fact, each constraint relates three entities: an
arc variable αi j , a head variable π j and a tail variable πi . Except for the back arc (t, s)
these constraints say that the arc variable has to be at least as large as the difference
between the head and the tail variable (αi j ≥ π j −πi). Now, the central observation
is that we can add any constant to π, because that constant cancels out in the dual
constraints, and changes to π do not change the objective, since it does not appear
there. Without loss of generality, we add a constant to π such that πs = 0. Then, since
the constraint x ts ≤∞ has slack for any finite valuation, we conclude αts = 0 from
complementary slackness, thus making the objective function finite. It follows that
πt ≥ 1+πs−αts = 1. To minimize, we’d like to set all αi j to zero, but some constraints
get in the way. Since πs = 0 and πt ≥ 1, any path from s to t has to have at least one
arc (i, j) for which the head variable π j is strictly greater than the tail variable πi (in
all other cases, i.e. when π j ≤ pi , we can set αi j to zero). Consequently, since there
exists an optimal integer solution, on each path there is an arc variable αi j ≥ 1. It turns
out that we can set πt = 1, so any s-t-path will have an arc for which αi j = 1, and we
can restrict ourselves to πi ,αi j ∈ {0, 1} instead of πi ,αi j ∈ Z. Removing the set of all
such arcs disconnects the network into two components, since it disconnects the source
and sink for all paths. The first component contains s and all πi = 0, the other contains
t and all πi = 1. Therefor, πi are the node labels telling us which component a node
belongs to, and the arc variables tell us which arcs we need to select to disconnect the

2017-02-11 ·22:53 4



TDA206/DIT370 DISCRETE OPTIMIZATION 2017 ·PERIOD 3 ·WEEK III

network. For obvious reasons, such an arc set is called a cut, and since the coefficients
in the minimizing objective function in the dual are the capacities of those edges, this
is the minimum capacity cut, or minimum cut for short. By strong duality (due to TUM),
the value of the dual objective function (minimum cut) is the same as the one for
the primal (maximum flow). This surprising duality is better known as the max-flow
min-cut theorem.

2017-02-11 ·22:53 5


	Integer Linear Programming (ILP)
	ILP with strong duality


