
Models of Computation

Bengt Nordström,1 2017-10-13
Department of Computing Science,
Chalmers and University of Göteborg,
Göteborg, Sweden

1 The language χ
The main purpose of the language χ is to illustrate some basic results in com-
putability. The standard computational models (Turing machines, Church’s λ-
calculus, Post’s deduction systems, Herbrand’s and Gödel’s general recursive func-
tions etc) were designed in the 1930’s long before the development of modern
programming languages. For somebody used to modern functional programming
languages these models seem rather awkard, in particular the complicated cod-
ings of programs and other inductively defined objects using (a coding of) natural
numbers. The strategy used is to first find a representation of natural numbers and
then using some version of prime factorization to represent other inductively de-
fined objects. It is simpler to use a computation model with a direct representation
of inductively defined objects.

Compared to the untyped λ-calculus, the language χ has constructors and case-
expressions. There is also an explicit operator for general recursion.

Some of the expressions in the language are called values (canonical expres-
sions), they are the expressions which are the result of a computation.

Definition 1 (value) An expression is called a value if it computes to itself.

A value is either a lambda-expression or an application of a primitive constant
(constructor) to a list of values.

Here is a list of all ways of forming programs and their informal semantics:

• The program λ x. e is a function which takes one argument (denoted by the
variable x) to an expression e (which may depend on x). This program is a
value, it cannot be computed further.

1The document has been modified by Nils Anders Danielsson. The main changes:

• N-ary application, n-ary lambdas and nullary constants have been replaced by binary ap-
plication, unary lambdas and n-ary constructor applications.

• Constructors and variables are now encoded by (representations of) natural numbers, not
single constructors.

• Call-by-name has been replaced by call-by-value. A section about equality between pro-
grams has been removed.

• The old definition of χ-computable allowed the program to give ill-formed output when
the function was undefined. Now the program must fail to terminate.



Models of Computation

• A constructor application c(e1, . . . , en) is a value if all of the arguments are
values. Note that the number of arguments, n, can be zero. The intuition is
that c is like a constructor in (strict) functional programming languages, it
is used to represent elements in inductively defined types.

• The program (e1 e2) is the application of the function e1 to the argument
e2. It is computed by first computing the value of e1. If the resulting value
is on the form λ x. e then the value of e2 is computed. If this expression has
the value d, then the value is the value of e[x←d], the expression obtained
by substituting the expression d for all free occurrences of the variable x in
e.

• The program case d of {c1(x1, . . . , xn1
)→ e1; . . .} expresses pattern match-

ing. The value of the expression is obtained by first computing the value
of d. If this is on the form ci(d1, . . . , dni

) then the value is the value of
ei[xni

←dni
] . . . [x1←d1].

• Finally, the program rec x = e is a recursive program. It is computed by
computing the value of the substitution e[x←rec x = e ].

The remainder of this section contains a more precise description of the lan-
guage.

1.1 Concrete syntax of the core language
We assume that we have two disjoint sets of identifiers: variables and constructors.
The variable e ranges over expressions in χ, x ranges over variables and c over
constructors.

The concrete syntax of the language χ is shown in Figure 1. In the text su-
perfluous parentheses around expressions will sometimes be used. Furthermore
parentheses around applications will sometimes be omitted. Such applications
should be read in a left-associative way. For instance, the expression e1 e2 e3
stands for ((e1 e2) e3).

1.2 Abstract syntax
In order to be precise about the operational semantics, we first give the abstract
syntax of the language as an inductively defined set Exp. The relation between
the concrete and abstract syntax should be obvious. It is the task of a parser to
translate from the concrete to the abstract syntax.

The set Exp is defined by the inductive definition in Figure 2. The definition
assumes that we have a set Var of variables and a set Const of constants (both



Models of Computation

(e1 e2) application
λ x. e abstraction
case e of {c1(x1, . . . , xn1

)→ e1; . . .} case-expression
rec x = e recursion
x variable
c(e1, . . . , en) constructor application

Figure 1: Concrete syntax

apply(e1, e2) ∈ Exp if e1, e2 ∈ Exp

lambda(x, e) ∈ Exp if x ∈ Var, e ∈ Exp

case(e, bs) ∈ Exp if e ∈ Exp, bs ∈ List(Br)

rec(x, e) ∈ Exp if x ∈ Var, e ∈ Exp

var(x) ∈ Exp if x ∈ Var

const(c, es) ∈ Exp if c ∈ Const, es ∈ List(Exp)

branch(c, xs, e) ∈ Br if c ∈ Const, xs ∈ List(Var), e ∈ Exp

Figure 2: Inductive definition of the abstract syntax

in bijective correspondence with the natural numbers), as well as sets List(A) of
lists of elements from sets A. The set List(A) has elements of the form nil or
cons(a, as), where a ∈ A and as ∈ List(A).

1.3 Operational semantics based on substitutions
The operational semantics will be an inductive definition of the computation rela-
tion. The relation

e −→ d,

defined in Figure 3, expresses that the computation of the expression e has the
value d. It is a relation between closed expressions.

The relation is defined using two substitution operations. If e, e ′ ∈ Exp, e is
closed, and x ∈ Var, then e ′[x← e] stands for the expression obtained by sub-
stituting e for all free occurrences of the variable var(x) in e ′. This operation is
defined in detail in the appendix. The operation is used to give a semantics for ap-
plications of lambda abstractions. It is somewhat more tricky to give a semantics



Models of Computation

e1 −→ lambda(x, e) e2 −→ d2 e[x←d2] −→ d

apply(e1, e2) −→ d

e −→ const(c, es) lookup(c, bs, xs, e ′) e ′[xs←es] 7→ e ′′ e ′′ −→ d

case(e, bs) −→ d

e[x← rec(x, e)] −→ d

rec(x, e) −→ d

lambda(x, e) −→ lambda(x, e)

es −→L ds

const(c, es) −→ const(c, ds)

nil −→L nil

e −→ d es −→L ds

cons(e, es) −→L cons(d, ds)

Figure 3: Operational semantics based on substitution

for case expressions, because the list of expressions in a constructor application
may not have the same length as the list of variables in a matching branch. The
relation e[xs← es] 7→ e ′ is inhabited (for e, e ′ ∈ Exp, es ∈ List(Exp) with all
expressions closed, and xs ∈ List(Var)) if xs and es have the same length n, and
in that case e ′ is e[xsn← esn] . . . [xs1← es1] (where xsn is the n-th element in
xs, and similarly for the other indexed expressions). Note that the order of the
individual substitution operations matters if several variables in xs are equal. The
relation is defined in the following way:

e[nil←nil] 7→ e

e[xs←ds] 7→ e ′

e[cons(x, xs)←cons(d, ds)] 7→ e ′[x←d]
The operational semantics also makes use of the lookup relation. Intuitively,

lookup(c, bs, xs, e) (for c ∈ Const, bs ∈ List(Br), xs ∈ List(Var) and e ∈ Exp)
is true if the first branch associated to the constant c in the list bs is branch(c, xs, e).



Models of Computation

It is inductively defined by the following clauses:

lookup(c, cons(branch(c, xs, e), bs), xs, e)

lookup(c, bs, xs, e) c 6= c ′

lookup(c, cons(branch(c ′, xs ′, e ′), bs), xs, e)

This is an inductive definition, so there is no other way of giving a direct proof
that the lookup relation is true. In particular, this means that lookup(c, nil, xs, e)
is always false.

The operational semantics also makes use of the −→L-relation. This relation
describes how a list is computed: we just compute each element of it.

We can see from the definition of the operational semantics that the −→-
relation is deterministic, i.e. a partial function. Notice also that the value of a
program is on one of the following forms:

• lambda(x, e), where x ∈ Var, e ∈ Exp, or

• const(c, es), where c ∈ Const, es ∈ List(Exp), and every element in es is
a value.

There is no need for the subprogram e to be evaluated. We are not evaluating
inside lambdas, because we want to use a naive definition of substitution.

2 The extensional halting problem
It is not possible to construct a closed program haltE in χ with the property that,
for any closed expression p,

haltE (λ x. p) −→ {True(), if p terminates,
False(), otherwise,

(1)

where “p terminates” means that there is some v such that p −→ v. We will prove
this by assuming that there is such a program haltE and deriving a contradiction.

Note the use of a lambda in haltE (λ x. p). If p does not terminate, then haltE p
always fails to terminate. It may not be so surprising that it is impossible to
implement haltE: What could this program do with its argument λ x. p? Running
it, by applying it to, say, True(), does not work, because p might not terminate.

Let us now prove that haltE cannot be defined by constructing a function on
closed expressions that inverts the termination behaviour of its argument. We



Models of Computation

could define a function terminvE in the following way:

terminvE ∈ Exp→ Exp
terminvE(x) =def case haltE x of {True()→ loop;False()→ Zero()}

Note that the concrete syntax in the right-hand side of the definition of terminvE
should be interpreted as abstract syntax, and that x is not a χ variable, but a meta-
variable that stands for an element in Exp. The term loop is also not a χ variable,
but an abbreviation that stands for a non-terminating program:

loop =def rec x = x

We notice that the program terminvE(x) terminates if and only if the closed
program x does not terminate. This holds for all closed programs x, in particular
for the program

strange =def rec x = terminvE(x)

We can now see that strange stands for a program which terminates if and only if
the program terminvE(strange) terminates. Thus strange terminates if and only
if it does not terminate, contradicting the assumption that there is a program haltE.

The version of the halting problem which we have discussed here could be
called the extensional halting problem, because we give a program as input to the
function which is to decide if the program terminates. This means that the function
which is to decide termination cannot inspect the syntax of the program. Maybe
it is possible to solve the halting problem if we work with a more syntactical
representation of the programs? We will later show that this is not the case. In
order to state this problem in a precise way we need to introduce some more
concepts.

3 Representing mathematical objects in χ
There is a simple way to represent an element in an arbitrary inductively defined
set as a program in χ. If the element has the form

c(e1, . . . , en)

and we represent ei by peiq, then we can represent the element by inventing a new
constructor c and define the representation by

pc(e1, . . . , en)q =def c(pe1q, . . . , penq).

We call this the standard representation of an inductively defined set.



Models of Computation

3.1 Representing N in χ
As an example, the elements in the set of natural numbers, N, are represented as
the following expressions in our programming language:

Zero(),
Suc(Zero()),

and so on.
Notice that these programs are written in the concrete syntax of the program-

ming language χ. If we want to see them as mathematical objects in the set Exp
then they are written (cConst stands for the element in Const which corresponds to
the identifier c)

const(ZeroConst, nil),
const(SucConst, cons(const(ZeroConst, nil), nil)),

and so on.
Thus the mathematical object 1 (as an element in the set N) is very different

from its representation p1q as an element in the mathematical set Exp. However,
the concrete syntax of 1 in χ is chosen so that there is almost no distinction.

3.2 Representing χ-programs in χ
The standard representation gives us a possibility to represent elements in an in-
ductively defined set as programs in χ. But the set Exp representing the abstract
syntax of programs is itself an inductively defined set! So, we can use this tech-
nique to represent χ-programs in χ by using the standard representation of its
abstract syntax:

papply(e1, e2)q = Apply(pe1q, pe2q)
plambda(x, e)q = Lambda(pxq, peq)
pcase(e, bs)q = Case(peq, pbsq)

prec(x, e)q = Rec(pxq, peq)
pvar(x)q = Var(pxq)

pconst(c, es)q = Const(pcq, pesq)
pbranch(c, xs, e)q = Branch(pcq, pxsq, peq)

Elements in List(A) are also encoded in the standard way:

pnilq = Nil()
pcons(a, as)q = Cons(paq, pasq)



Models of Computation

We assumed above that Var and Const are in bijective correspondence with the
natural numbers, so we can use natural numbers, encoded in the standard way, to
represent variables and constants.

3.2.1 A comment on the representation

As an example, the program which applies the identity function to zero is in the
concrete syntax written as

(λ x. x) Zero().

This program corresponds to the following mathematical object (element in Exp):

apply(lambda(xVar, var(xVar)), const(ZeroConst, nil))

This object is in turn represented by the following expression:

Apply(Lambda(pxVarq,Var(pxVarq)),Const(pZeroConstq,Nil()))

If we assume that the variable xVar and the constructor zeroConst are both repre-
sented by the natural number 0, then we get the following, final expression:

Apply(Lambda(Zero(),Var(Zero())),Const(Zero(),Nil()))

This is how we are able to represent a program as a value inside the language
itself.

4 Representing a program as a mathematical object
We just showed how it is possible to represent an object in an inductively defined
set as a program in χ. A natural question to ask is how one can go in the other
direction. How can we see a program as a mathematical object? There are two
ways.

4.1 The intensional representation
We have just seen how we can see a program p as an element p ∈ Exp. In this
exposition we identify a program with its abstract syntax as represented in the set
Exp. This is the intensional view of a program. The mathematical object which
represents the program carries all “relevant” syntactic information. If we were
explicit about it, we would distinguish a program ‘‘p‘‘ from its abstract syntax p
(which is a mathematical object in the set Exp). We can see the step from p to ‘‘p‘‘
as printing the program p. The inverse step is parsing.



Models of Computation

4.2 The extensional representation
It is also possible to think of the mathematical object which a program stands
for as its value (which is an element in Exp). This is the view of denotational
semantics. We can define a partial function J·K ∈ Exp→̃Exp by

JpK = v iff p −→ v.

So, when we are using our extensional glasses J·K, we see no differences between
programs which have equal values.

Note that this representation is still somewhat intensional. For instance, the
α-equivalent programs λ x. x and λy. y are seen as different, as are the programs
λ x. x and λ x. (λy. y)x.

5 Programming in χ
Let us now look at a simple χ program that adds two natural numbers. To construct
the addition function we proceed as follows. We want to construct a program add
which satisfies the following equations:2

add Zero() m = m (1)
add Suc(n) m = Suc(add n m)

It is clear that we can replace these equations by one:

add l m = case l of (2)
{ Zero() -> m
; Suc(n) -> Suc(add n m)
}

Note that if (2) holds for all l and m, then

add Zero() m
=
case Zero() of { Zero() -> m

; Suc(n) -> Suc(add n m)
}

= {by the computation rule for case}
m

and
2It is left as an exercise for the reader to come up with a suitable definition of what the equality

sign means here.



Models of Computation

add Suc(n) m
=
case Suc(n) of { Zero() -> m

; Suc(n) -> Suc(add n m)
}

= {by the computation rule for case}
Suc(add n m)

We can move the variables of the left hand side in (2) to the right hand side:

add = \l. \m. case l of (3)
{ Zero() -> m
; Suc(n) -> Suc(add n m)
}

So, we have to find the fixpoint add solving the equation

add = F add

where F stands for the following program:

\a. \l. \m. case l of
{ Zero() -> m
; Suc(n) -> Suc(a n m)
}

These kinds of fixpoints are found by the recursion operator:

rec add = F add

If we call this program adds, we notice that

adds
= {external definition}
rec add = F add
= {computation rule of rec}
F (rec add = F add)
= {external definition}
F adds

So, we can finally define addition by the following program:

rec add = \l. \m.
case l of
{ Zero() -> m
; Suc(n) -> Suc(add n m)
}



Models of Computation

6 An interpreter for χ in χ
Definition 2 A self-evaluator for the language χ is a program eval in χ such that

• if p −→ v then eval ppq −→ pvq, and

• if eval ppq −→ v ′ then p −→ v for some v satisfying pvq = v ′.

Or, expressed differently: Jeval ppqK = pJpKq. Here, a = b means that either
both a and b are defined and equal, or both a and b are undefined.

We have noticed that it is easy to represent the abstract syntax of a program in
χ as an expression in χ. We will now continue and define an interpreter for the
language in itself. We start with the weak evaluation relation, −→, and treat one
clause of the inductive definition of the operational semantics at a time:

Application:

e1 −→ lambda(x, e) e2 −→ d2 e[x←d2] −→ d

apply(e1, e2) −→ d

Here we assume that we have access to an implementation of substitution, subst:

eval Apply(e1, e2) =
case eval e1 of

{ Lambda(x, e) -> eval (subst x (eval e2) e)
}

Case:

e −→ const(c, es) lookup(c, bs, xs, e ′) e ′[xs←es] 7→ e ′′ e ′′ −→ d

case(e, bs) −→ d

Here we assume that we have access to a lookup operation, as well as substitu-
tion for lists, substs:

eval Case(e, bs) =
case eval e of

{ Const(c, es) -> case lookup c bs of
{ Branch(_, xs, e) -> eval (substs xs es e)
}

}

Recursion
e[x← rec(x, e)] −→ d

rec(x, e) −→ d

eval Rec(x, e) = eval (subst x Rec(x, e) e)



Models of Computation

Abstraction:

lambda(x, e) −→ lambda(x, e)

eval Lambda(x, e) = Lambda(x, e)

Constructor
es −→L ds

const(c, es) −→ const(c, ds)

Here we assume that we have access to a map function:

eval Const(c, es) = Const(c, map eval es)

To summarize, our aim is to construct a program eval which solves the fol-
lowing system of five equations:

eval Apply(e1, e2) =
case eval e1 of

{ Lambda(x, e) -> eval (subst x (eval e2) e)
}

eval Case(e, bs) =
case eval e of

{ Const(c, es) -> case lookup c bs of
{ Branch(_, xs, e) -> eval (substs xs es e)
}

}
eval Rec(x, e) = eval (subst x Rec(x, e) e)
eval Lambda(x, e) = Lambda(x, e)
eval Const(c, es) = Const(c, map eval es)

We can solve these equations using the recursion operator and a case-expression:

rec eval = \p. case p of
{ Apply(e1, e2) ->

case eval e1 of
{ Lambda(x, e) -> eval (subst x (eval e2) e)
}

; Case(e, bs) ->
case eval e of
{ Const(c, es) -> case lookup c bs of
{ Branch(_, xs, e) -> eval (substs xs es e)
}

}
; Rec(x, e) -> eval (subst x Rec(x, e) e)
; Lambda(x, e) -> Lambda(x, e)
; Const(c, es) -> Const(c, map eval es)
}

Filling in the missing pieces above is left as an exercise for the reader.



Models of Computation

7 Computability
Suppose that A and B are inductively defined sets which can be represented in χ.
If a ∈ A then paq is the representation of a in χ.

Definition 3 (A program computes a function) If φ ∈ A→̃B then we say that
the program p in χ computes the partial function φ if, for all a ∈ A,

• if φ(a) is defined, then p paq −→ pφ(a)q, and

• if p paq −→ b for some b, then φ(a) is defined and b = pφ(a)q.

(Or, alternatively, for all a ∈ A, Jp paqK = pφ(a)q.)

Definition 4 (χ-computable) We say that a partial function is χ-computable if
there is a program in χ which computes it.

As an example, if φ ∈ (N × N)→̃N then p ∈ χ computes φ if, for all n,
m ∈ N, Jp Pair(pnq, pmq)K = pφ(n,m)q. Notice that the self-evaluator is a
proof that the −→-relation is computable.

8 Examples of noncomputable functions

8.1 The intensional halting problem of self-application is not
computable

Consider the partial function Θ ∈ Exp→̃Bool defined by

Θ(p) =

{
true, if p ppq terminates,
false, otherwise.

(2)

The program p is an element in Exp and ppq is its representation in χ. Notice that
both p and ppq are elements in the set Exp!

The functionΘ is not computable. If it were, then there would exist a program
selfhalts in χ which computes Θ, i.e.

Jselfhalts ppqK = pΘ(p)q.

Such a program selfhalts would have the property that

selfhalts ppq −→ {True(), if p ppq terminates,
False(), otherwise.

(3)



Models of Computation

In a similar way as when we proved the extensional halting problem we can
define the program

terminvI =def λ x. case selfhalts x of {True()→ loop;False()→ Zero()}.

We notice that the program terminvI ppq terminates if and only if the program
p ppq does not terminate. This fact holds for all programs p, in particular for
terminvI itself. In this case we can conclude that terminvI pterminvIq terminates
if and only if the program terminvI pterminvIq does not terminate. This is clearly
a contradiction and we have to conclude that Θ is not computable.

8.2 The intensional halting problem is not computable
Consider the partial function halts ∈ Exp× Exp→̃Bool defined by

halts(p, n) =

{
true, if p pnq terminates,
false, otherwise.

(4)

This function is not computable. If it were, then there would exist a program
phalts in χ such that

phalts Pair(ppq, pnq) −→ {True(), if p pnq terminates,
False(), otherwise.

Suppose that x is a code of a program p. We can come to a contradiction if we
are able to construct a program which computes to True() if p ppq terminates, and
computes to False() otherwise (this would be a construction of the non-existing
program selfhalts above).

But phalts Pair(x, x) is such a program.
Hence, the program

λ x. phalts Pair(x, x)

is a program, which computes the halting problem of self-application. We have
reached a contradiction and our assumption that we can compute the extensional
halting problem must be wrong.

8.3 Half of the halting problem is computable
The partial function halfhalts ∈ Exp→̃Bool defined by

halfhalts(p) =

{
true, if p terminates,
undefined, otherwise

(5)



Models of Computation

is computable.
We want to find a program phalfhalts in χ such that

phalfhalts ppq −→ True() if p terminates.

Note that Definition 2 implies that p terminates if and only if the program eval ppq
terminates. Thus eval is almost a function that computes phalfhalts, the only
difference is that if eval p terminates, then it computes to the representation of the
value of p, while a function which computes halfhalts must terminate with True().
We can thus implement phalfhalts by converting the output of eval, which in the
relevant cases must be the representation of some value in Exp, to True():

\x. case eval x of
{ Lambda(x, e) -> True()
; Const(c, es) -> True()
}

When we apply this program to a code ppq, we see that it terminates with True()
if p terminates, and is undefined otherwise.

A The substitution operation
If e, e ′ ∈ Exp, e is closed and x ∈ Var, then the expression e ′[x← e] stands for
the expression obtained by substituting e for all free occurrences of the variable
var(x) in e ′. It is defined in Figure 4 together with corresponding operations for
branches and lists of expressions or branches.



Models of Computation

apply(e1, e2)[x←e] = apply(e1[x←e], e2[x←e])
lambda(x, e ′)[x←e] = lambda(x, e ′)
lambda(y, e ′)[x←e] = lambda(y, e ′[x←e]) if x 6= y

case(e ′, bs)[x←e] = case(e ′[x←e], bs[x←e]BL)
rec(x, e ′)[x←e] = rec(x, e ′)
rec(y, e ′)[x←e] = rec(y, e ′[x←e]) if x 6= y

var(x)[x←e] = e
var(y)[x←e] = var(y) if x 6= y

const(c, es)[x←e] = const(c, es[x←e]EL)
branch(c, xs, e ′)[x←e]B = branch(c, xs, e ′) if x ∈ xs
branch(c, xs, e ′)[x←e]B = branch(c, xs, e ′[x←e]) if x /∈ xs

nil[x←e]EL = nil
cons(d, ds)[x←e]EL = cons(d[x←e], ds[x←e]EL)

nil[x←e]BL = nil
cons(b, bs)[x←e]BL = cons(b[x←e]B, bs[x←e]BL)

Figure 4: Definition of substitution


