
Models of Computation

Bengt Nordström, November 4, 2013

Department of Computing Science,

Chalmers and University of Göteborg,

Göteborg, Sweden

1 Some mathematical preliminaries: sets, relations

and functions

1.1 Propositions, predicates and relations

A mathematical propositon – also known as a formula – is something we prove.

A proposition is true when we have a proof of it1 , and is false when its negation

is true. Notice that there are mathematical propositions which we do not know

whether they are true or false (for instance Goldbach’s conjecture, or if there are

52 consecutive 3s in the decimal expansion of π.). A proposition is built up by

logical connectives like ∀, ∃,=,⊃,∧,∨ . . . , but it is also possible to define new

ones by using an inductive definition. We will see examples of this later.

A predicate P over a setA is a propositional function over the set. This means

that for each element x in A we get a proposition P(x). A simple example is

the predicate iszero, which is a propositional function over N expressing that its

argument is equal to 0. So iszero(n) is a proposition for each n ∈ N. We see

that a predicate expresses a property of the elements in the set.

A relation is a generalization of a predicate, instead of one argument it can

take several arguments. Simple examples are the equality relation over a set and

ordering relations over sets. An example from this course is the relation p −→ q,

which expresses that the program p computes to q in one or more steps.

We will use inductively defined set and relations. This seem very natural for

computer scientists and it avoids a lot of unnecessary coding. The tradition in

mathematics (recursive functions, lambda calculus, Turing machines) is to repre-

1The reader who is interested in the foundation of mathematics will notice that this is the

constructive definition of truth.



Models of Computation

sent an element in an inductively defined set as a number. This is a very indirect

representation.

1.2 Inductive sets

To give an inductive definition of a set amounts to give an exhaustive list of rules

how to form elements in the set. There is a unique constructor associated with each

clause. This is a completely natural for a computer scientist used to functional

languages like Haskell, Caml and SML.

The canonical example of an inductively defined set is the set N of natural

numbers.

1.2.1 Natural numbers

Definition 1 (N) The set N of natural numbers is inductively defined by the fol-

lowing clauses:
0 ∈ N

s(x) ∈ N , if x ∈ N

This is to be read as:

0 is a natural number and if x is a natural number, then s(x) is a natural num-

ber. The constructors are 0 and s. Any natural number can be obtained by applying

one of these two laws a finite number of times. In some presentations there is an

extra clause expressing exactly this requirement, we will instead consider it to be

part of the meaning of an inductive definition that the clauses are exhaustive and

applied a finite number of times 2 .

An element in an inductively defined set has always (in our presentation) the

form c(e1, . . . en) for n ≥ 0. We also assume that two elements c(e1, . . . en) and

c ′(e ′1, . . . e
′
m) are equal if and only if the constant c is the same as the constant

c ′, n = m, and ei = e ′i for all i ≤ n. This condition of equalities simplifies the

2Inductively defined types in the languages above do not have the restriction of finite genera-

tion. This is unfortunate, since it destroys many properties which we are used to. For instance that

x 6= s(x).



Models of Computation

presentation (for instance simplifying the recursion scheme) but it also makes the

definition of some sets a little less straightforward. It is for instance erroneous to

define the set of integers by the clauses:

0 ∈ Z

s(x) ∈ Z , if x ∈ Z

p(x) ∈ Z , if x ∈ Z

with the intention that s and p are the successor and predecessor operations 3.

We will often be liberal about the syntax for the constructors and use prefix,

postfix or mixfix syntax.

Induction over N

From the inductive definition of N it is clear that we can use the following proof

principle to prove that a predicate C over the natural numbers is true for any

natural number p:

To prove (∀p ∈ N)C(p) it is enough to prove

• C(0)

• (∀x ∈ N)C(x) ⊃ C(s(x))

The sign ⊃ means implication. We see that we get one proof condition for each

clause in the inductive definition of N. We have reduced the problem of proving a

property about any natural number to two cases, one of the zero case and one for

the successor case.

Structural recursion over N

From the inductive defintion it is also clear that it gives us a way to define total

functions from N to a set C. If we have the following

• d ∈ C
3If you don’t see why, look at the previous paragraph again!



Models of Computation

• e ∈ N → C→ C

then we can construct a function f ∈ N → C by the following definition

f(0) = d

f(x+ 1) = e(x, f(x))

This scheme for defining functions is called primitive recursion, and we can cap-

ture it by a higher order function rec ∈ N → C → (N → C → C) → C which

will be defined in the following way:

rec(0, d, e) = d

rec(x+ 1, d, e) = e(x, rec(x, d, e))

Now we can use this function to give a non-recursive definition of a primitive

recursive function. If we for instance want to define the function f above then we

can use the definition

f(x) =def rec(x, d, e)

Notice that there is no occurrence of f in the right hand side. We can prove by

induction that f satisfies the equations. For the base case f(0) = rec(0, d, e) = d

by the definition of f and rec. For the induction step we assume that f(x) =

rec(x, d, e) and we want to prove that f(x+1) = e(x, f(x)). We see that f(x+1) =

rec(x+ 1, d, e) = e(x, rec(x, d, e) = e(x, f(x)).

1.2.2 The cartesian product between two sets

Definition 2 (The cartesian product between two sets) The cartesian productA×
B between the two sets A and B is defined by the following clause:

pair(a, b) ∈ A× B , if a ∈ A, b ∈ B

So, an element in A × B is always equal to something on the form pair(a, b),

where a ∈ A, b ∈ B.



Models of Computation

Proof principle for A× B

From the definition of the cartesian product it is clear that we can use the following

proof principle to prove that a predicate C over A × B is true for any element

p ∈ A× B:

To prove (∀p ∈ A× B)C(p) it is enough to prove

• (∀x ∈ A,y ∈ B)C(pair(x, y))

So, we have reduced the problem of proving a property of an element in A×B to

proving a property about elements in A and B.

Structural recursion over A× B

From the definition it is also clear that it gives us a way to define functions from

A× B to a set C. If we have the following

• e ∈ A→ B→ C

then we can construct a function f ∈ A× B→ C by the following definition

f(pair(x, y)) = e(x, y)

So, we have reduced the problem of defining a function fromA×B to the problem

of defining a function from A and B.

This scheme for defining functions can be captured by a higher order function

split ∈ A × B → (A → B → C) → C which will be defined in the following

way:

split(pair(x, y)e) = d

Now we can use this function to give a definition of f above without using pattern

matching:

f(x) =def split(x, e)



Models of Computation

1.2.3 Lists

Definition 3 (Lists) The set List(A) of lists of elements from the set A is induc-

tively defined by the following clauses:

nil ∈ List(A)

cons(a, as) ∈ List(A) , if a ∈ A,as ∈ List(A)

So, a list is either equal to nil or to cons(a, as), where a ∈ A and as ∈ List(A).

Notice that the inductive definition means that all lists are finite.

Proof principle for List(A)

From the definition of List(A) it is clear that we can use the following proof

principle to prove that a predicate C over List(A) is true for any list p:

To prove (∀p ∈ List(A))C(p) it is enough to prove

• C(nil)

• (∀a ∈ A,as ∈ List(A))C(as) ⊃ C(cons(a, as))

We have one case for each way of forming elements in List(A).

Structural recursion over List(A)

From the definition it is also clear that it gives us a way to define functions from

List(A) to a set C. If we have the following

• d ∈ C

• e ∈ A→ List(A) → C→ C

then we can construct a function f ∈ List(A) → C by the following definition

f(nil) = d

f(cons(a, as)) = e(a, as, f(as))



Models of Computation

This scheme for defining functions is called primitive recursion over lists, and we

can capture it by a higher order function

listrec ∈ List(A) → C→ (A→ List(A) → C→ C) → C

which will be defined in the following way:

listrec(nil, d, e) = d

listrec(cons(a, as), d, e) = e(a, as, listrec(as, d, e))

So, the function f above can be defined in a non-recursive way by

f(x) =def listrec(x, d, e)

1.2.4 Bool

The set of boolean values can be defined in a similar way. We leave this as an

exercise.

1.2.5 Tables

If A and B are sets, then we make the following inductive definition of the set

T(A,B) of tables from A to B:

We assume that a ∈ A, b ∈ B and t ∈ T(A,B).

nilt ∈ T(A,B) the empty table

upd(t, a, b) ∈ T(A,B) a non-empty table

We leave it as an exercise to formulate the proof principle for tables.

1.3 Inductive relations

In the same way as we define sets inductively, we will define relations inductively.

Remember that we look at a relation as a propositional function, i.e. something

which when given its argument(s) yields a proposition.



Models of Computation

As an example, the relation which expresses the relation that the result of

looking up the key a in the table t is b can be defined by the two clauses:

lookup(upd(t, a, b), a, b)

lookup(t, a, b) a 6= a ′

lookup(upd(t, a ′, b ′), a, b)

Here we assume that t ∈ T(A,B), a ∈ A, and b ∈ B.

We read this as an inductive definition, i.e. that the only way we can get a

direct proof that lookup(t, a, b) holds is by using one of these clauses.

1.4 Partial functions

We say that f is a partial function from the set A to the set B, f ∈ A→̃B, if f is

a binary relation over A and B, such that f(a, b) and f(a, c) implies b = c. We

write f(a) = b instead of f(a, b). We will say that f(a) is defined if there is an

element b such that f(a, b). Notice that the lookup-relation is a partial function

in its first two arguments.

A function f ∈ A→̃B is total if it is defined for all its arguments:

∀x∈A . ∃b∈B . f(a) = b

The function is surjective if all elements in B are mapped:

∀b∈B . ∃a∈A f(a) = b

The function is injective if it always maps different objects in A to different

objects in B:

a 6= a ′ ⊃ f(a) 6= f(a ′)

or equivalently

f(a) = f(a ′) ⊃ a = a ′


