
Lecture
Models of Computation

(DIT310, TDA184)

Nils Anders Danielsson

2017-10-30



Can every function be implemented?
▶ No (given some assumptions).
▶ This lecture: Two proofs (sketches).



General information

See the course web page.



Comparing
sets’ sizes



Injections

▶ Definition: 𝑓 ∈ 𝐴 → 𝐵 is injective if
∀𝑥, 𝑦 ∈ 𝐴. 𝑓 𝑥 = 𝑓 𝑦 implies 𝑥 = 𝑦.

▶ If there is an injection from 𝐴 to 𝐵,
then 𝐵 is at least as “large” as 𝐴.



Surjections

▶ Definition: 𝑓 ∈ 𝐴 → 𝐵 is surjective if
∀𝑏 ∈ 𝐵. ∃𝑎 ∈ 𝐴. 𝑓 𝑎 = 𝑏.

▶ If there is a surjection from 𝐴 to 𝐵,
then there is an injection from 𝐵 to 𝐴
(assuming the axiom of choice).

▶ Thus, if there is a surjection from 𝐴 to 𝐵,
then 𝐴 is at least as “large” as 𝐵.



Left/right inverses

For functions 𝑓 ∈ 𝐴 → 𝐵, 𝑔 ∈ 𝐵 → 𝐴:
▶ Definition: 𝑔 is a left inverse of 𝑓 if

∀𝑎 ∈ 𝐴. 𝑔 (𝑓 𝑎) = 𝑎.
▶ Definition: 𝑔 is a right inverse of 𝑓 if

∀𝑏 ∈ 𝐵. 𝑓 (𝑔 𝑏) = 𝑏.
▶ If 𝑓 has a left inverse, then it is injective.
▶ If 𝑓 has a right inverse, then it is surjective.



Bijections

▶ Definition: 𝑓 ∈ 𝐴 → 𝐵 is bijective if
it is both injective and surjective.

▶ A function is bijective iff
it has a left and right inverse.

▶ If there is a bijection from 𝐴 to 𝐵,
then 𝐴 and 𝐵 have the same “size”.



Quiz

Which of the following functions are
injective? Surjective?

▶ 𝑓 ∈ ℕ → ℕ, 𝑓 𝑛 = 𝑛 + 1.
▶ 𝑔 ∈ ℤ → ℤ, 𝑔 𝑖 = 𝑖 + 1.

▶ ℎ ∈ ℕ → Bool , ℎ 𝑛 = {true, if 𝑛 is even,
false, otherwise.

�

Respond at http://pingo.upb.de/,
using a code that I provide.

http://pingo.upb.de/


Countable,
uncountable



Countable sets

▶ 𝐴 is countable if there is
an injection from 𝐴 to ℕ.

▶ If there is no such injection,
then 𝐴 is uncountable.

▶ 𝐴 is countably infinite if there is
a bijection from 𝐴 to ℕ.



Countable sets

▶ There is an injection from 𝐴 to 𝐵 iff
𝐴 = ∅ or there is a surjection from 𝐵 to 𝐴
(assuming the axiom of choice).

▶ Thus 𝐴 is countable iff
𝐴 = ∅ or there is a surjection from ℕ to 𝐴.



Quiz

The set of finite strings of characters
is infinite. Is it countable?

▶ Yes.
▶ No.



If 𝐴 is countable, then List 𝐴 is countable.
Proof sketch:

▶ We are given an injection 𝑓 ∈ 𝐴 → ℕ.
▶ Define 𝑔 ∈ List 𝐴 → ℕ by

𝑔 (𝑥1, 𝑥2, …, 𝑥𝑛) =
21 + 𝑓 𝑥1 31 + 𝑓 𝑥2 ⋯ 𝑝1 + 𝑓 𝑥𝑛𝑛 ,

where 𝑝𝑛 is the 𝑛-th prime number.
▶ By the fundamental theorem of arithmetic and

the injectivity of 𝑓 we get that 𝑔 is injective.



Uncountable sets

▶ Is every set countable?
▶ No.
▶ Diagonalisation can be used to show that

certain sets are uncountable.



ℕ → ℕ is uncountable

Proof (using the axiom of choice):
▶ Assume that ℕ → ℕ is countable.
▶ The set is non-empty, so we get a surjection

𝑓 ∈ ℕ → (ℕ → ℕ).
▶ Define 𝑔 ∈ ℕ → ℕ by 𝑔 𝑛 = 𝑓 𝑛 𝑛 + 1.
▶ By surjectivity we get that 𝑔 = 𝑓 𝑖 for some 𝑖.
▶ Thus 𝑓 𝑖 𝑖 = 𝑔 𝑖 = 𝑓 𝑖 𝑖 + 1, which is impossible.



Diagonalisation

The function 𝑔 differs from every function
enumerated by 𝑓 on the “diagonal”:

0 1 2 3 ⋯
𝑓 0 +1
𝑓 1 +1
𝑓 2 +1
𝑓 3 +1
⋮



Not every function is computable

Proof sketch (classical):
▶ The set of programs 𝑃 of a typical

programming language is countable, thus
𝑃 = ∅ or there is a surjection from ℕ to 𝑃 .

▶ There is no surjection from ℕ to ℕ → ℕ.
▶ Thus there is no surjection from 𝑃 to ℕ → ℕ

(the composition of two surjections is
surjective).

▶ Thus, however you give semantics to programs,
it is not the case that every function is the
semantics of some program.



Quiz

If we define 𝑔 𝑛 = 𝑓 𝑛 (2𝑛) + 1, does the
diagonalisation argument still work? [BN]

0 1 2 3 4 5 6 ⋯
𝑓 0 +1
𝑓 1 +1
𝑓 2 +1
𝑓 3 +1
⋮



The halting
problem



Uncomputable functions

▶ Can we find an explicit example of a function
that cannot be computed?

▶ What does “can be computed” mean?
▶ Let us restrict attention to a

“typical” programming language.
▶ In that case the answer is yes.
▶ A standard example is the halting problem.



The halting problem
Given the source code of a program and its input,
determine whether the program will halt when run
with the given input.



The halting problem is not computable

Proof sketch (with hidden assumptions):
▶ Assume that the halting problem is

implemented by halts .
▶ Define p x = if halts x x then loop else skip.
▶ Consider the application p ⌜ p ⌝,

where ⌜ p ⌝ is the source code of p.
▶ The result of halts ⌜ p ⌝ ⌜ p ⌝ must be
true or false.



Quiz

Can the result of halts ⌜ p ⌝ ⌜ p ⌝ be true?
▶ Yes.
▶ No.



The halting problem is not computable

Proof sketch (continued):
▶ If halts ⌜ p ⌝ ⌜ p ⌝ = true, then:

▶ p ⌜ p ⌝ terminates (specification of halts).
▶ p ⌜ p ⌝ = loop, which does not terminate.

▶ If halts ⌜ p ⌝ ⌜ p ⌝ = false, then:
▶ p ⌜ p ⌝ does not terminate.
▶ p ⌜ p ⌝ = skip, which does terminate.

▶ Either way, we get a contradiction.



Models of
computation



Models of computation

▶ The proof is based on some assumptions.
▶ For instance, the programming language allows

us to define if−then−else and loop, with the
intended semantics.

▶ Later in the course we will be more precise.
▶ To make it easier to study questions of

computability we will use idealised models of
computation.



Models of computation

One model:
▶ The primitive recursive functions.
▶ Functional in character.
▶ All programs terminate.



Models of computation

Another model:
▶ A lambda calculus with pattern matching

called 𝜒.
▶ Functional in character.
▶ Some programs do not terminate.



Models of computation

Yet another model:
▶ Turing machines.
▶ Imperative in character.
▶ Some programs do not terminate.



The
Church-Turing

thesis



Models of computation

▶ How are these models related?
▶ Can one say anything about

programming in general?
▶ It has been noted that many

models of computation are,
in some sense, equivalent:

▶ Turing machines.
▶ The (untyped) 𝜆-calculus.
▶ The recursive functions.
▶ …



The Church-Turing thesis
Every effectively calculable function
on the positive integers can be computed
using a Turing machine.

▶ This is one variant of the thesis.
▶ We will define “can be computed using a

Turing machine” more precisely later.



The Church-Turing thesis
Every effectively calculable function
on the positive integers can be computed
using a Turing machine.

▶ This is one variant of the thesis.
▶ We will define “can be computed using a

Turing machine” more precisely later.



Effectively calculable

“Effectively calculable” means roughly that the
function can be computed by a human being

▶ following exact instructions,
with a finite description,

▶ in finite (but perhaps very long) time,
▶ using an unlimited amount of pencil and paper,
▶ and no ingenuity.

(See Copeland.)



The Church-Turing thesis

▶ The thesis is a conjecture.
▶ “Effectively calculable” is an intuitive notion,

not a formal definition.
▶ However, the thesis is widely believed to be

true.



Turing-complete
A programming language is Turing-complete if every
Turing machine can be simulated using a program
written in this language.

▶ This is one variant of the definition.
▶ We have not specified what it means to

simulate a Turing machine.



Turing-complete
A programming language is Turing-complete if every
Turing machine can be simulated using a program
written in this language.

▶ This is one variant of the definition.
▶ We have not specified what it means to

simulate a Turing machine.



Only
terminating
programs?



Only terminating programs?

▶ Every primitive recursive function terminates.
▶ Easy to solve the halting problem!
▶ Can we have a model of computation that

includes exactly those functions on the natural
numbers that can be implemented using Turing
machines that always halt?

▶ No (given some assumptions).



Only terminating programs?

▶ Every primitive recursive function terminates.
▶ Easy to solve the halting problem!
▶ Can we have a model of computation that

includes exactly those functions on the natural
numbers that can be implemented using Turing
machines that always halt?

▶ No (given some assumptions).



Only terminating programs?

The following assumptions are contradictory:
▶ The set of valid programs Prog ⊆ ℕ.
▶ For every computable function f ∈ ℕ → ℕ

there is a program ⌜ f ⌝ ∈ Prog .
▶ There is a computable function
eval ∈ ℕ → ℕ → ℕ satisfying
eval ⌜ f ⌝ n = f n.

(See Brown and Palsberg.)



Only terminating programs?

Proof sketch:
▶ Define the computable function f ∈ ℕ → ℕ by
f n = eval n n + 1.

▶ We get

f ⌜ f ⌝
= eval ⌜ f ⌝ ⌜ f ⌝ + 1
= f ⌜ f ⌝ + 1,

which is impossible.



A variant of the previous argument
Assumptions:

▶ Programs: Prog .
▶ Computable semantics:

⟦ ⟧ ∈ Prog × ℕ → ℕ

▶ A coding function:

code ∈ Prog → ℕ

▶ A computable left inverse of code:

decode ∈ ℕ → Prog



A variant of the previous argument

Goal: Prove that the following statement is false:

∀ g ∈ ℕ → ℕ. g is computable ⇒
∃ g ∈ Prog . ∀ n ∈ ℕ. ⟦(g , n)⟧ = g n



A variant of the previous argument

Goal: Prove that the following statement is true:

∃ g ∈ ℕ → ℕ. g is computable ∧
(∀g ∈ Prog . (∀n ∈ ℕ. ⟦(g , n)⟧ = g n) → ⊥)



A variant of the previous argument
▶ Define g ∈ ℕ → ℕ by

g n = ⟦(decode n, n)⟧ + 1.
Note that g is computable.

▶ Assume that g ∈ Prog , with
∀ n ∈ ℕ. ⟦(g , n)⟧ = g n.

▶ We get a contradiction:
g (code g) =
⟦(decode (code g), code g)⟧ + 1 =
⟦(g , code g)⟧ + 1 =
g (code g) + 1



Summary

▶ Injections, surjections, bijections.
▶ Countable and uncountable sets.
▶ Diagonalisation.
▶ The halting problem.
▶ Models of computation.
▶ The Church-Turing thesis.

Please try to solve the recommended exercises
before coming to the tutorial on Wednesday.



Summary

▶ Injections, surjections, bijections.
▶ Countable and uncountable sets.
▶ Diagonalisation.
▶ The halting problem.
▶ Models of computation.
▶ The Church-Turing thesis.

Please try to solve the recommended exercises
before coming to the tutorial on Wednesday.


