
Lecture
Models of Computation

(DIT310, TDA184)

Nils Anders Danielsson

2017-12-11



Today

▶ Repetition (mainly). Please interrupt if you
want to discuss something in more detail.

▶ Course evaluation.



Models of computation

▶ Actual hardware or programming languages:
Lots of (irrelevant?) details.

▶ In this course: Idealised models of
computation.

▶ PRF, RF.
▶ Χ.
▶ Turing machines.



The Church-Turing thesis

▶ The thesis:
Every effectively calculable function on the
positive integers can be computed using a
Turing machine.

▶ Widely believed to be true.
▶ Many models are Turing-complete.



Comparing sets’ sizes

▶ Injections, surjections, bijections.
▶ Countable (injection to ℕ), uncountable.
▶ Diagonalisation.
▶ Not every function is computable.



Inductively defined sets
An inductively defined set:

nil ∈ List A

x ∈ A xs ∈ List A

cons x xs ∈ List A

Primitive recursion:

listrec ∈ B → (A → List A → B → B) →
List A → B

listrec n c nil = n
listrec n c (cons x xs) = c x xs (listrec n c xs)



Inductively defined sets
An inductively defined set:

nil ∈ List A

x ∈ A xs ∈ List A

cons x xs ∈ List A

Pattern (with recursive constructor arguments last):

drec ∈ One assumption per constructor → D → A
drec f1 … f𝑘 (c1 x1 … x𝑛1

) =
f1 x1 … x𝑛1

(drec f1 … f𝑘 x𝑖1
) … (drec f1 … f𝑘 x𝑛1

)
⋮
drec f1 … f𝑘 (c𝑘 x1 … x𝑛𝑘

) =
f𝑘 x1 … x𝑛𝑘

(drec f1 … f𝑘 x𝑖𝑘
) … (drec f1 … f𝑘 x𝑛𝑘

)



Inductively defined sets
An inductively defined set:

nil ∈ List A

x ∈ A xs ∈ List A

cons x xs ∈ List A

Structural induction (P : a predicate on List A):

P nil
∀x ∈ A. ∀ xs ∈ List A.P xs ⇒ P (cons x xs)

∀xs ∈ List A.P xs



Quiz

Write down the “type” of one of the higher-order
primitive recursion schemes for the following
inductively defined set:

n ∈ ℕ
leaf n ∈ Tree

l , r ∈ Tree

node l r ∈ Tree



PRF

Sketch:

f () = zero

f (x ) = suc x

f (x1, …, x𝑘, …, x𝑛) = x𝑘
f (x1, …, x𝑛) = g (h1 (x1, …, x𝑛), …, h𝑘 (x1, …, x𝑛))
f (x1, …, x𝑛, zero) = g (x1, …, x𝑛)
f (x1, …, x𝑛, suc x ) =

h (x1, …, x𝑛, f (x1, …, x𝑛, x ), x )



PRF

▶ Abstract syntax (PRF n).
▶ Denotational semantics:

⟦ ⟧ ∈ PRF n → (ℕn → ℕ)

▶ Big-step operational semantics:

f [𝜌] ⇓ n



PRF

▶ Strictly weaker than 𝜒/Turing machines.
▶ Some 𝜒-computable total functions

are not PRF-computable,
for instance the PRF semantics.



RF

▶ PRF + minimisation.
▶ For f ∈ ℕ ⇀ ℕ:
f is RF-computable ⇔
f is 𝜒-computable ⇔
f is Turing-computable.



Χ

e ∷= x
∣ (e1 e2)
∣ 𝜆x . e
∣ C(e1, …, e𝑛)
∣ case e of {C1(x1, …, x𝑛) → e1; …}
∣ rec x = e

▶ Untyped, strict.
▶ rec x = e ≈ let x = e in x .



Χ

▶ Abstract syntax.
▶ Substitution of closed expressions.
▶ Big-step operational semantics, not total.
▶ The semantics as a partial function:

⟦ ⟧ ∈ CExp ⇀ CExp

▶ Representation of inductively defined sets.



Representing expressions
Coding function:

⌜ ⌝ ∈ Exp → CExp
⌜ x ⌝ = Var(⌜ x ⌝)
⌜ e1 e2 ⌝ = Apply(⌜ e1 ⌝, ⌜ e2 ⌝)
⌜ 𝜆x . e ⌝ = Lambda(⌜ x ⌝, ⌜ e ⌝)
⋮

Alternative “type”:
⌜ ⌝ ∈ Exp A → CExp (Rep A)

Rep A: Representations of programs of type A.



Representing expressions
Coding function:

⌜ ⌝ ∈ Exp → CExp
⌜ var x ⌝ = const ⌜Var ⌝ (cons ⌜ x ⌝ nil)
⌜ apply e1 e2 ⌝ = const ⌜Apply ⌝

(cons ⌜ e1 ⌝ (cons ⌜ e2 ⌝ nil))
⌜ lambda x e ⌝ = const ⌜ Lambda ⌝

(cons ⌜ x ⌝ (cons ⌜ e ⌝ nil))
⋮

Alternative “type”:
⌜ ⌝ ∈ Exp A → CExp (Rep A)

Rep A: Representations of programs of type A.



Representing expressions
Coding function:

⌜ ⌝ ∈ Exp → CExp
⌜ var x ⌝ = const ⌜Var ⌝ (cons ⌜ x ⌝ nil)
⌜ apply e1 e2 ⌝ = const ⌜Apply ⌝

(cons ⌜ e1 ⌝ (cons ⌜ e2 ⌝ nil))
⌜ lambda x e ⌝ = const ⌜ Lambda ⌝

(cons ⌜ x ⌝ (cons ⌜ e ⌝ nil))
⋮

Alternative “type”:
⌜ ⌝ ∈ Exp A → CExp (Rep A)

Rep A: Representations of programs of type A.



Computability

▶ f ∈ A ⇀ B is 𝜒-computable if

∃ e ∈ CExp. ∀ a ∈ A. ⟦e ⌜ a ⌝⟧ = ⌜ f a ⌝.

▶ Use reasonable coding functions:
▶ Injective.
▶ Computable. But how is this defined?

▶ Χ-decidable: f ∈ A → Bool .
▶ Χ-semi-decidable:

If f a = false then ⟦e ⌜ a ⌝⟧ is undefined.



Some computable partial functions
▶ The semantics ⟦ ⟧ ∈ CExp ⇀ CExp:

∀ e ∈ CExp. ⟦eval ⌜ e ⌝⟧ = ⌜ ⟦e ⟧ ⌝.

▶ The coding function ⌜ ⌝ ∈ Exp → CExp:

∀ e ∈ Exp. ⟦code ⌜ e ⌝⟧ = ⌜ ⌜ e ⌝ ⌝.

▶ The “Terminates in n steps?” function
terminates-in ∈ CExp × ℕ → Bool :

∀ p ∈ CExp × ℕ.
⟦terminates-in ⌜ p ⌝⟧ = ⌜ terminates-in p ⌝.



Some non-computable functions

The halting problem with self-application,

halts-self ∈ CExp → Bool
halts-self p =

if p ⌜ p ⌝ terminates then true else false,

can be reduced to the halting problem,

halts ∈ CExp → Bool
halts p = if p terminates then true else false.



Some non-computable functions
Proof sketch:

▶ Assume that halts implements halts .
▶ Define halts-self in the following way:

halts-self = 𝜆p. halts Apply(p, code p)

▶ halts-self implements halts-self ,

∀ e ∈ CExp.
⟦halts-self ⌜ e ⌝⟧ = ⌜ halts-self e ⌝,

because Apply(⌜ e ⌝, code ⌜ e ⌝) ⇓ ⌜ e ⌜ e ⌝ ⌝.



Some non-computable functions
The halting problem can be reduced to:

▶ Semantic equality:

equal ∈ CExp × CExp → Bool
equal (e1, e2) =

if ⟦e1⟧ = ⟦e2⟧ then true else false

▶ Pointwise equality of elements in Fun =
{(f , e) ∣ f ∈ ℕ → Bool , e ∈ Exp,

e implements f }:

pointwise-equal ∈ Fun × Fun → Bool
pointwise-equal ((f , ), (g , )) =
if ∀ n ∈ ℕ. f n = g n then true else false



Quiz

What is wrong with the following reduction
of the halting problem to pointwise-equal?

halts = 𝜆p. not (pointwise-equal
Lambda(⌜ n ⌝,

Apply(⌜ terminates-in ⌝,
Const(⌜Pair ⌝,

Cons(p,Cons(Var(⌜ n ⌝),Nil())))))
⌜ 𝜆 .False() ⌝)

Bonus question: How can the problem be fixed?



Some non-computable functions
The halting problem can be reduced to:

▶ An optimal optimiser:

optimise ∈ CExp → CExp
optimise e =

some optimally small expression with
the same semantics as e

▶ Is a computable real number equal to zero?

is-zero ∈ Interval → Bool
is-zero x = if ⟦x ⟧ = 0 then true else false

▶ Many other functions, see Rice’s theorem.



Turing machines

▶ A tape with a head:

..1. ␣. 0. 1. 1. ␣. ␣. ␣. ⋯.

Head

▶ A state.
▶ Rules.



Turing machines
▶ Abstract syntax.
▶ Small-step operational semantics.
▶ The semantics as a family of partial functions:

⟦ ⟧ ∈ ∀ tm ∈ TM .List Σtm ⇀ List Γtm

▶ Several variants:
▶ Accepting states.
▶ Possibility to stay put.
▶ A tape without a left end.
▶ Multiple tapes.
▶ Only two symbols (plus ␣).



Turing-computability

▶ Representing inductively defined sets.
▶ Turing-computable partial functions.
▶ Turing-decidable languages.
▶ Turing-recognisable languages.



Some computable partial functions

▶ The semantics (uncurried):

{(tm, xs) ∣ tm ∈ TM , xs ∈ List Σtm } ⇀
List Γtm

Self-interpreter/universal TM.

(The definition of computability can
be generalised so that it applies to
dependent partial functions.)

▶ The 𝜒 semantics.



Some non-computable functions

▶ The Post correspondence problem
(seen as a function to Bool).

▶ Is a context-free grammar ambiguous?



Equivalence

▶ The Turing machine semantics is also
𝜒-computable.

▶ Partial functions f ∈ ℕ ⇀ ℕ are
Turing-computable iff they are 𝜒-computable.



Finally

▶ We have studied the concept of “computation”.
▶ How can “computation” be formalised?

▶ To simplify our work: Idealised models.
▶ The Church-Turing thesis.

▶ We have explored the limits of computation:
▶ Programs that can run arbitrary programs.
▶ A number of non-computable functions.



Good
luck!


