Nils Anders Danielsson

2017-11-27

» Rice's theorem.
» Turing machines.

Correction

Last week:
» How do we represent a y-computable function?
» Example:

{f e N—=N| f is x-computable }

» By the representation of one of the closed
expressions witnessing the computability of the
function.

Correction

However, | want to allow any witness.
» Implementations of functions in

{f € N—=N| f is x-computable } — Bool

are only required to function correctly for
one particular witness of a given f.

Correction

Note that

{f e N—N| fis x-computable }
is equivalent to

{f e N—=N| e € CEzp, e implements [}.
Replace it with

{(f,e)|f e N—=N,e € CExp, e implements f },

and define " (f,e) '="e".

Rice's
theorem

Rice's theorem
Assume that P € CFExp — Bool satisfies the
following properties:

» P is non-trivial:
There are expressions €0, e € CETp
satisfying P e, = true and P e, = false.

» P respects pointwise semantic equality:
Ve, e, € CExp.
if Veée CExp.[e; e] = [ey €] then

Then P is x-undecidable.

The halting problem reduces to P:

halts = Ae.case P "\ _.recz =z ' of
{False() —
P"Ax. (A _. ey) (eval codee)"
: True() —
not (P " Ax. (A _. e) (eval _code e))
}

» Is e € CFExp an implementation of the
successor function for natural numbers?

» Is e € CFExp syntactically equal to
An.Suc(n)?

Turing
machines

Intuitive idea

v

A tape that extends arbitrarily far to the right.

v

The tape is divided into squares.

v

The squares can contain symbols,
chosen from a finite alphabet.

v

A read/write head, positioned over one square.

v

The head can move from one square to an
adjacent one.

v

Rules that explain what the head does.

Rules

» A finite set of states.
» When the head reads a symbol
(blank squares correspond to a special symbol):
» Check if the current state contains a
matching rule, with:
» A symbol to write.
» A direction to move in.
» A state to switch to.
» If not, halt.

» Turing motivated his design partly by reference
to what a human computer does.

» Please read his text.

Abstract
syntax

Abstract syntax

A Turing machine (one variant) is specified by
giving the following information:
» S: A finite set of states.
> sy € St An initial state.
» >: The input alphabet,
a finite set of symbols with | ¢ X.
I': The tape alphabet,
a finite set of symbols with Y U {,,} CT.
yeSxI'—=8SxI'x{L,R}:
The transition “function”.

v

v

S is a finite set S50 €S
3 is a finite set L& X
[is a finite set YU{,}CT
§eSxI'=8xT x{LR}

(S,5,%,T,0) € TM

Operational
semantics

Positioned tapes

» Representation of the tape and
the head’s position:

Tape = List I' x List T’
» Here (Is, rs) stands for

reverse ls H rs

followed by an infinite sequence of blanks ().

([2,1],[3,4,.,]) stands for:

Head

!
1121314 1uvlululuw

The symbol under the head

The head is located over the first symbol in rs
(or a blank, if rs is empty):

heady € Tape — T’
heady (ls,rs) = head s

head € List I' =T’
head || =
head (z :: xs) = x

Writing to the tape:

write € I' — Tape — Tape
write z (Is,rs) = (ls, x = tail rs)

The “tail” of a sequence:

tail € List I' = List I’
tail || =]
tail (r:=rs) =rs

Moving the head:

move € {L,R} — Tape — Tape

move R (ls, rs) = (head rs :: s, tail rs)
move L ([],7s) = ([] ,75)

move L (ls, rs) = (tail Is , head ls :: 1s)

Actions describe what the head will do:
Action =T x {L,R}

Note:
0e SxIT'— 8§ x Action

First write, then move:

act € Action — Tape — Tape
act (z,d) t = move d (write x t)

Quiz

Which of the following equalities are valid?

TN TN TN

S—"

~
\l/\l/\l/)))

— — —

— — ~—r — —

TN TN TN

- - - - - -

~_ ~— ~— — ~— ~~—
B I S R T o]

~_ — ~— — ~— ~—

~ o~~~ N /N

- - - - - -

S— N N N N
- SR SR T o T)

Small-step operational semantics

A configuration consists of a state and a tape:
Configuration = State x Tape

The small-step operational semantics relates
configurations:

o (s, headr t) = (s, a)
(s,t) — (s, act a t)

Reflexive transitive closure

Zero or more small steps:

*
cp — Cy Cy —" 3

c—"c g —" ¢

The machine halts if it ends up in a configuration ¢
for which there is no ¢’ such that ¢ — ¢’.

The machine’s result

» The machine is started in state s,.
» The head is initially over the left-most square.

» The tape initially contains a string of
characters from the input alphabet X
(followed by blanks).

» If the machine halts, then the result consists of
the contents of the tape, up to the last
non-blank symbol.

» (Last year | required the machine to halt with
the head over the left-most square.)

A relation between List Y and List T:

(s: [, @s) —* (s,1) e (s,1) — ¢

zs |} remove (list t)

Constructing the result

The function [list converts the representation of the

tape to a list, and remove removes all trailing
blanks:

hist € Tape — List I’
list (Is,rs) = reverse Is + s

remove € List I' = List I’

remove |] =[]

remove (x :: xs) = cons’ x (remove xs)
cons’ € I' = List ' — List T

cons’ . [] =]

cons’ x xs =1 = xs

Quiz

Which properties does |} satisfy?
» Is it deterministic (for every Turing machine)?

Vs € List 2. VY ys,zs € List I.
s ys Nas | zs = ys = zs

» Is it total (for every Turing machine)?

Vas € List . dys € List I'. xs | ys

The semantics as a partial function:

[-] € Ytm € TM. List ¥, — List T',,,
[tm] zs = ys if zs {,,, ys

Two
examples

» Input alphabet: {0,1}.
» Tape alphabet: {0,1,,}.
» States: { s}

» Initial state: s.

0 (8070) - (SOa 17 R)
d (s9,1) = (59,0,R)
(0,1,R)

» No result
0000
1111
0101
1010
0101,
1010,

>
>
>
>
>
>

Another example

One way to make sure that the head ends up over
the left-most square:

» Input alphabet: {0,1}.

» Tape alphabet: {0,1,0,1,,}.
» States: {5y, S1, 59, S3 |-

» Initial state: s,.

Accepting
states

Accepting states

Turing machines with accepting states:

S is a finite set S9 €S ACS
) is a finite set ¢
[is a finite set Yu{, }Cr
JeSxI'—=8xTIx{L,R}

(S, 59, A, 2,T,8) € TM

A relation on List X2:

(s, [], 28) —* (s, 1) Ac. (s,t) — ¢
se A

Accept xs

Is the string rejected?

A relation on List X2:

(895 [], x8) —* (s, 1) Ac. (s, t) — ¢
s¢ A

Reject xs

Note that if the TM fails to halt, then the string is
neither accepted nor rejected.

Input alphabet: {1}.
Tape alphabet: {1, .}.
States: { sy, 1 }-

Initial state: s,.
Accepting states: { s}

vV v v v Vv

(1,1,R)
oWl O
(1,1,R)

» Quiz: Which strings are accepted by this
Turing machine?

Variants

Variants

Equivalent (in some sense) variants:
» Possibility to stay put.
» A tape without a left end.
» Multiple tapes.
» Only two symbols, other than the blank one.

Representing
inductively
defined sets

One method:

"_"eN=— List {1}
"zero ' =]

r A

r |
sucn =1:= n

Another method:

"_"eN— List {0,1}
"zero' =0:]]
"sucn ' =1:=:"n"

This method is used below.

Lists

Assume that members of A can be represented using
a function " _ " € A — List X that is splittable:

» It is injective.
» There is a function

split € List X — List X X List X
such that, for any z € A, xs € List 3,

split ("z " Hxs) ="z, 1s).

Lists

Assume that members of A can be represented using
a function " _ " € A — List X that is splittable:

» It is injective.
» There is a function

split € List X — List X X List X
such that, for any z € A, xs € List 3,
split ("z " Hxs) ="z, 1s).

Note that split can only be defined for one of the
presented methods for representing natural numbers.

Representation of List A:
"€ List A— List (XU{0,1})
[T =0x]]

"rurs =1="z Has’

This function is splittable.

» None
3,0,2]
3,0,2,0]
3,2,0]
4,1,3,1]
4,1,3,1,0]

> |

> |
> |
> |
> |

Pairs

Assume that members of A and B can be
represented using functions " _ " € A — List ¥
and " _ "% € B — List ¥ that are splittable.

Representation of A x B:

"_'€ Ax B— List X
r<I’y)1:rI1A_H_ry-|B

This function is also splittable.

Turing-
computability

Turing-computable functions

Assume that we have methods for representing
members of the sets A and B as elements of
List X, where X is a finite set.

A partial function f € A — B is Turing-computable
(with respect to these methods) if there is a Turing
machine ¢m such that:

> X, = 2.

» Vae A tm] "a'="fa"

» A language over an alphabet X is
a subset of List 3.

Turing-decidable

A language L over X is Turing-decidable if there is
a Turing machine tm such that:

> X, = 2.
» Vas € List X. if zs € L then Accept, = 1s.
» Vs € List ¥. if zs ¢ L then Reject, s,

Turing-recognisable

A language L over X is Turing-recognisable if there
is a Turing machine ¢m such that:

> X, =2
» Vas € List ¥, xs € L iff Accept, xs.

Summary

» Rice's theorem.
» Turing machines:

v

Abstract syntax.

Operational semantics.

Variants.

Representing inductively defined sets.
Turing-computability.

v

v

v

v

