Lecture Models of Computation (DIT310, TDA184)

Nils Anders Danielsson

2017-11-20

- X-computability.
- A self-interpreter for χ .
- Reductions.
- More problems that are or are not computable.
- More about coding.

computability

X-computable functions

Assume that we have methods for representing members of the sets A and B as closed χ expressions.

A partial function $f \in A \rightarrow B$ is χ -computable (with respect to these methods) if there is a closed expression e such that:

$$\blacktriangleright \forall a \in A.$$

if f a is defined then $e \ulcorner a \urcorner \Downarrow \ulcorner f a \urcorner$.

►
$$\forall a \in A, v \in Exp.$$

if $e \ulcorner a \urcorner \Downarrow v$ then $f a$ is defined and $v = \ulcorner f a \urcorner$.

X-computable functions

A special case:

A (total) function $f \in A \rightarrow B$ is χ -computable if there is a closed expression e such that:

$$\blacktriangleright \forall a \in A. \ e \ulcorner a \urcorner \Downarrow \ulcorner f a \urcorner.$$

An alternative characterisation

- Define $CExp = \{ p \in Exp \mid p \text{ is closed} \}.$
- ▶ The semantics as a partial function:

$$\llbracket _ \rrbracket \in CExp \rightharpoonup CExp \\ \llbracket p \rrbracket = v \text{ if } p \Downarrow v$$

• $f \in A \rightarrow B$ is χ -computable iff

 $\exists e \in CExp. \ \forall a \in A. \llbracket e \ulcorner a \urcorner \rrbracket = \ulcorner f a \urcorner.$

What would go "wrong" if we decided to represent closed χ expressions in the following way?

A closed χ expression is represented by True() if it terminates, and by ${\rm False}()$ otherwise.

- ► The choice of representation is important.
- In this course (unless otherwise noted or inapplicable): The "standard" representation.
- ► It might make sense to require that the representation function 「 _ ¬ is "computable".
 - However, how should this be defined?

• Addition of natural numbers is χ -computable:

 $\begin{array}{l} add \in \mathbb{N} \times \mathbb{N} \to \mathbb{N} \\ add \ (m,n) = m+n \end{array}$

 The intensional halting problem is not *χ*-computable:

> $halts \in CExp \rightarrow Bool$ halts p = if p terminates then true else false

▶ The semantics [[_]] is computable.

Self-

interpreter

Goal: Define eval ∈ CExp satisfying:
∀e, v ∈ CExp, if e ↓ v then eval 「e ¬↓ 「v ¬.
∀e, v' ∈ CExp, if eval 「e ¬↓ v' then there is some v such that e ↓ v and v' = 「v ¬.

Or: $\forall e \in CExp. [[eval \ e \]] = \ [[e]] \].$

$$\begin{array}{l} \mathbf{rec} \ eval = \lambda \ e. \ \mathbf{case} \ e \ \mathbf{of} \\ \{ \dots \\ \} \end{array}$$

lambda $x \, \, e \Downarrow$ lambda $x \, \, e$

 $\mathsf{Lambda}(x, e) \to \mathsf{Lambda}(x, e)$

$$\underbrace{ e_1 \Downarrow \mathsf{lambda} \ x \ e}_{\mathsf{apply} \ e_1 \ \psi_2} \quad e \ [x \leftarrow v_2] \Downarrow v \\ \mathsf{apply} \ e_1 \ e_2 \Downarrow v \\ \end{aligned}$$

$$\begin{array}{l} \mathsf{Apply}(e_1,e_2) \to \mathbf{case} \ eval \ e_1 \ \mathbf{of} \\ \{\mathsf{Lambda}(x,e) \to eval \ (subst \ x \ (eval \ e_2) \ e) \\ \} \end{array}$$

Exercise: Define *subst*.

Self-interpreter

$$\frac{e \ [x \leftarrow \mathsf{rec} \ x \ e] \Downarrow v}{\mathsf{rec} \ x \ e \Downarrow v}$$

 $\mathsf{Rec}(x, e) \to eval \ (subst \ x \ \mathsf{Rec}(x, e) \ e)$

Self-interpreter

 $\frac{es \Downarrow^{\star} vs}{\mathsf{const} \ c \ es \Downarrow \mathsf{const} \ c \ vs}$

 $Const(c, es) \rightarrow Const(c, map \ eval \ es)$

Exercise: Define map.

$\begin{array}{cccc} e \Downarrow \mathsf{const} \ c \ vs & Lookup \ c \ bs \ xs \ e' \\ e' \ [xs \leftarrow vs] \mapsto e'' & e'' \Downarrow v \\ \hline \mathsf{case} \ e \ bs \Downarrow v \end{array}$

$$\begin{aligned} \mathsf{Case}(e, bs) &\to \mathbf{case} \ eval \ e \ \mathbf{of} \\ \{ \mathsf{Const}(c, vs) \to \mathbf{case} \ lookup \ c \ bs \ \mathbf{of} \\ \{ \mathsf{Pair}(xs, e') \to eval \ (substs \ xs \ vs \ e') \\ \} \end{aligned}$$

Exercise: Define lookup and substs.

Self-interpreter

rec $eval = \lambda e.$ case e of {Lambda $(x, e) \rightarrow$ Lambda(x, e); Apply $(e_1, e_2) \rightarrow \mathbf{case} \ eval \ e_1 \ \mathbf{of}$ {Lambda $(x, e) \rightarrow eval (subst \ x (eval \ e_2) \ e)$ } ; $\operatorname{Rec}(x, e) \longrightarrow eval \ (subst \ x \ \operatorname{Rec}(x, e) \ e)$; $Const(c, es) \rightarrow Const(c, map eval es)$; $Case(e, bs) \rightarrow case \ eval \ e \ of$ $\{ Const(c, vs) \rightarrow case \ lookup \ c \ bs \ of \}$ $\{\operatorname{Pair}(xs, e') \rightarrow eval \ (substs \ xs \ vs \ e')\}$

Note: *subst*, *map*, *lookup* and *substs* are meta-variables that stand for (closed) expressions.

Is the following partial function χ -computable?

$$halts \in CExp \rightarrow Bool$$

halts $p =$
if p terminates then true else undefined

X-decidable

A function $f \in A \rightarrow Bool$ is χ -decidable if it is χ -computable. If not, then it is χ -undecidable.

X-semi-decidable

A function $f \in A \rightarrow Bool$ is χ -semi-decidable if there is a closed expression e such that, for all $a \in A$:

▶ If
$$f a =$$
true then $e \ulcorner a \urcorner \Downarrow \ulcorner$ true \urcorner .

▶ If f a = false then $e \ulcorner a \urcorner$ does not terminate.

The halting problem:

 $halts \in CExp \rightarrow Bool$ halts p = if p terminates then true else false

A program witnessing the semi-decidability:

 $\lambda p. (\lambda _. True()) (eval p)$

Reductions

Reductions (one variant)

A χ -reduction of $f \in A \rightarrow B$ to $g \in C \rightarrow D$ consists of a proof showing that, if g is χ -computable, then f is χ -computable.

Reductions (one variant)

A χ -reduction of $f \in A \rightarrow B$ to $g \in C \rightarrow D$ consists of a proof showing that, if g is χ -computable, then f is χ -computable.

- ▶ If *f* is reducible to *g*, and *f* is not computable, then *g* is not computable.
- Last week we proved that the halting problem is undecidable by reducing another problem to it.

More (un)decidable problems

Semantic equality

Are two closed χ expressions semantically equal?

$$\begin{array}{l} equal \in \textit{CExp} \times \textit{CExp} \rightarrow \textit{Bool} \\ equal \ (e_1, e_2) = \\ \quad \mathbf{if} \ \llbracket e_1 \rrbracket = \llbracket e_2 \rrbracket \ \mathbf{then \ true \ else \ false} \end{array}$$

The halting problem reduces to this one:

$$halts = \lambda p. not (equal \operatorname{Pair}(p, \lceil \operatorname{rec} x = x \rceil))$$

Pointwise equality

Pointwise equality:

 $\begin{array}{l} pointwise-equal \in CExp \times CExp \rightarrow Bool\\ pointwise-equal \ (e_1, e_2) = \\ \mathbf{if} \ \forall \ e \in CExp. \ \llbracket e_1 \ e \rrbracket = \llbracket e_2 \ e \rrbracket\\ \mathbf{then true \ else \ false} \end{array}$

The previous problem reduces to this one:

 $\begin{array}{l} equal = \lambda \, p. \, \mathbf{case} \, p \, \, \mathbf{of} \\ \{ \mathsf{Pair}(e_1, \, e_2) \rightarrow \\ pointwise\text{-}equal \\ \mathsf{Pair}(\mathsf{Lambda}(\mathsf{Zero}(), \, e_1), \\ \mathsf{Lambda}(\mathsf{Zero}(), \, e_2)) \end{array}$

Termination in *n* steps

▶ Termination in *n* steps:

terminates-in $\in CExp \times \mathbb{N} \rightarrow Bool$ terminates-in (e, n) =if $\exists v. \exists p \in e \Downarrow v. | p | \le n$ then true else false

|p|: The number of rules in the derivation tree.

Decidable: We can define a variant of the self-interpreter that tries to evaluate e but stops if more than n rules are needed. How do we represent a χ-computable function?
Example:

 $\{f \in \mathbb{N} \to \mathbb{N} \mid f \text{ is } \chi \text{-computable} \}$

 By the representation of one of the closed expressions witnessing the computability of the function. Is the following problem χ -decidable for A = Bool? What if $A = \mathbb{N}$? Let $Fun = \{f \in A \rightarrow Bool \mid f \text{ is } \chi\text{-computable}\}.$ $pointwise\text{-equal'} \in Fun \times Fun \rightarrow Bool$ pointwise-equal' (f, g) =if $\forall a \in A. f a = g a$ then true else false

Hint: Use eval or terminates-in.

Pointwise equality of computable functions in $Bool \rightarrow Bool$

The function *pointwise-equal'* is decidable.
Implementation:

 $\begin{array}{l} pointwise-equal' = \lambda \, p. \, \mathbf{case} \, p \, \, \mathbf{of} \\ \{ \mathsf{Pair}(f,g) \rightarrow \\ and \, (equal_{Bool} \, (eval \, \mathsf{Apply}(f, \ulcorner \, \mathsf{True}() \urcorner)) \\ (eval \, \, \mathsf{Apply}(g, \ulcorner \, \mathsf{True}() \urcorner))) \\ (equal_{Bool} \, (eval \, \, \mathsf{Apply}(f, \ulcorner \, \mathsf{False}() \urcorner)) \\ (eval \, \, \mathsf{Apply}(g, \ulcorner \, \mathsf{False}() \urcorner))) \end{array}$

Pointwise equality of computable functions in $Bool \rightarrow Bool$

The function *pointwise-equal'* is decidable.
Implementation:

Pointwise equality of computable functions in $\mathbb{N} \rightarrow Bool$

The function *pointwise-equal'* is undecidable.
The halting problem reduces to it:

Coding

One way to give a semantics to _ _ _:
▶ _ _ _ is a constructor of a variant of *Exp*:

$$\frac{e \in Exp}{e \ \subseteq \overline{Exp}} \qquad \frac{e_1 \in \overline{Exp}}{\mathsf{apply}} \quad e_2 \in \overline{Exp}$$

► This variant is the domain of 「_ ¬:

$$\begin{bmatrix} - \\ - \\ e \end{bmatrix} \xrightarrow{} Exp \rightarrow Exp$$

$$\begin{bmatrix} e \\ - \\ e \end{bmatrix} \xrightarrow{} = e$$

$$\begin{bmatrix} apply \ e_1 \ e_2 \end{bmatrix} = Apply(\begin{bmatrix} e_1 \\ - \\ e_2 \end{bmatrix})$$

$$\vdots$$

► Examples:

$$\begin{bmatrix} f & True() \end{bmatrix} = \mathsf{Apply}(f, \lceil \mathsf{True}() \end{bmatrix}$$
$$\begin{bmatrix} eval & code & e \end{bmatrix} = \mathsf{Apply}(\lceil eval \rceil, code & e)$$

• Note that you do not have to use $\lfloor - \rfloor$.

The reduction used above:

$$\begin{split} halts &= \lambda \, p. \, not \, (pointwise-equal' \\ \mathsf{Pair}(\ulcorner \lambda \, n. \, terminates-in \, \mathsf{Pair}(\llcorner \, code \, p \, \lrcorner, n) \urcorner, \\ \ulcorner \lambda \, _. \, \mathsf{False}() \urcorner)) \end{split}$$

Expanded:

```
\begin{array}{l} \lambda \, p. \, not \; (pointwise-equal' \\ {\sf Pair}({\sf Lambda}(\ulcorner \, n \urcorner, \\ {\sf Apply}(\ulcorner \, terminates-in \urcorner, \\ {\sf Const}(\ulcorner \, {\sf Pair} \urcorner, \\ {\sf Cons}(code \; p, \\ {\sf Cons}({\sf Var}(\ulcorner \, n \urcorner), {\sf Nil}()))))), \\ \ulcorner \lambda \_. \; {\sf False}() \urcorner)) \end{array}
```


Probably not what you want:

$$\lambda \, p. \lceil eval \ p \ \rceil = \lambda \, p. \mathsf{Apply}(\lceil eval \ \rceil, \mathsf{Var}(\lceil p \ \rceil))$$

If p corresponds to 0:

$$\lambda p. \mathsf{Apply}(\ulcorner eval \urcorner, \mathsf{Var}(\mathsf{Zero}()))$$

A constant function.

Perhaps more useful:

$$\lambda \, p. \, \lceil \, eval \, \llcorner \, code \, \, p \, \lrcorner \, \urcorner = \lambda \, p. \, \mathsf{Apply}(\lceil \, eval \, \urcorner, \, code \, \, p)$$

For any expression e:

$$(\lambda \, p. \ulcorner eval _ code \ p _ \urcorner) \ulcorner e \urcorner \Downarrow \ulcorner eval \ulcorner e \urcorner \urcorner$$

What is the result of evaluating $(\lambda p. eval \ eval \ code \ p \) \ Zero()$?

- Nothing
- ► Zero()
- ► 「Zero() ¬
- 「 Zero()]]
 「 Zero()]]]
 「 Zero()]]]]

- The language χ is untyped.
- However, it may be instructive to see certain programs as typed.

Rep A: Representations of programs of type *A*.
Some examples:

True() : Bool「True() [¬] : Rep Bool ftrue : Bool $: (A \to B) \to A \to B$ $\lambda f. \lambda x. f x$ $\lambda f. \lambda x. \operatorname{Apply}(f, x) : \operatorname{Rep} (A \to B) \to$ $Rep A \rightarrow Rep B$ $: Rep A \rightarrow Rep A$ eval $: Rep \ A \to Rep \ (Rep \ A)$ code terminates-in $: Rep \ A \times \mathbb{N} \to Bool$

The reduction used above:

$$\begin{split} halts &= \lambda \, p. \, not \, (pointwise-equal' \\ \mathsf{Pair}(\ulcorner \lambda \, n. \, terminates-in \, \mathsf{Pair}(\llcorner code \, p \, \lrcorner, n) \urcorner, \\ \ulcorner \lambda \, _. \, \mathsf{False}() \urcorner)) \end{split}$$

lf

$\begin{array}{l} \textit{pointwise-equal':} \\ \textit{Rep} \ (\mathbb{N} \rightarrow \textit{Bool}) \times \textit{Rep} \ (\mathbb{N} \rightarrow \textit{Bool}) \rightarrow \textit{Bool} \end{array}$

then

 $halts: Rep \ A \rightarrow Bool.$

More undecidable problems

Is the following function χ -computable?

$$optimise \in CExp \rightarrow CExp$$

 $optimise \ e =$
some optimally small expression with
the same semantics as e

Size: The number of constructors in the abstract syntax (*Exp*, *Br*, *List*, not *Var* or *Const*).

Full employment theorem for compiler writers

- ► An optimally small non-terminating expression is equal to rec x = x (for some x).
- ▶ The halting problem reduces to this one:

$$\begin{aligned} halts &= \lambda \, p. \, \mathbf{case} \, optimise \, p \, \, \mathbf{of} \\ \{ \mathsf{Rec}(x, e) \to \mathbf{case} \, e \, \, \mathbf{of} \\ & \{ \mathsf{Var}(y) \quad \to \mathsf{False}() \\ & ; \, \mathsf{Rec}(x, e) \to \mathsf{True}() \\ & ; \, \dots \\ & \} \\ ; \, \dots \\ \} \end{aligned}$$

Computable real numbers

- Computable reals can be defined in many ways.
- ▶ One example, using signed digits:

$$\begin{aligned} &Interval = \\ & \{f \in \mathbb{N} \to \{-1, 0, 1\} \mid f \text{ is } \chi\text{-computable} \} \\ & \llbracket _ \rrbracket \in Interval \to [-1, 1] \\ & \llbracket f \rrbracket = \sum_{i=0}^{\infty} f \ i \cdot 2^{-i-1} \end{aligned}$$

Is a computable real number equal to zero?

▶ Is a computable real number equal to zero?

 $is\text{-}zero \in Interval \rightarrow Bool$ $is\text{-}zero \ x = \mathbf{if} \ [\![x]\!] = 0 \mathbf{then true else false}$

▶ The halting problem reduces to this one:

$$\begin{split} halts &= \lambda \, p. \, not \, (is\text{-}zero \ \ \lambda \, n. \\ \textbf{case} \, terminates\text{-}in \, \textsf{Pair}(\ code \ p \ , n) \, \textbf{of} \\ & \{ \mathsf{True}() \rightarrow \textsf{One}() \\ & ; \, \textsf{False}() \rightarrow \textsf{Zero}() \\ & \} \urcorner) \end{split}$$

- ► A list on Wikipedia.
- ► A list on MathOverflow.

- X-computability.
- A self-interpreter for χ .
- Reductions.
- More problems that are or are not computable.
- More about coding.