Lecture Models of Computation (DIT310, TDA184)

Nils Anders Danielsson

2017-11-13

- ${\rm X},$ a small functional language:
 - Concrete and abstract syntax.
 - ▶ Operational semantics.
 - ► Several variants of the halting problem.
 - Representing inductively defined sets.

Concrete syntax

Concrete syntax

$$\begin{array}{l} e ::= x \\ \mid & (e_1 \ e_2) \\ \mid & \lambda x. \ e \\ \mid & \mathsf{C}(e_1, ..., e_n) \\ \mid & \mathbf{case} \ e \ \mathbf{of} \ \{\mathsf{C}_1(x_1, ..., x_n) \to e_1; ... \} \\ \mid & \mathbf{rec} \ x = e \end{array}$$

Variables (x) and constructors (C) are assumed to come from two disjoint, countably infinite sets.

Sometimes extra parentheses are used, and sometimes parentheses are omitted around applications: $e_1 \ e_2 \ e_3$ means $((e_1 \ e_2) \ e_3)$.

X	Haskell	
$\lambda x. e$	\x -> e	
True()	True	
Suc(n)	Suc n	
Cons(x, xs)	x : xs	
$\mathbf{rec} \ x = e$	let $x = e$ in x	

Note: Haskell is typed and non-strict, χ is untyped and strict.

X:

$$\mathbf{case} \ e \ \mathbf{of} \ \{ \mathsf{Zero}() \to x; \mathsf{Suc}(n) \to y \}$$

Haskell:

And two more

$$\begin{array}{l} \mathbf{rec} \ add = \lambda \ m. \ \lambda \ n. \ \mathbf{case} \ n \ \mathbf{of} \\ \{ \mathsf{Zero}() \ \to m \\ ; \mathsf{Suc}(n) \to \mathsf{Suc}(add \ m \ n) \\ \} \end{array}$$

$$\lambda m. \mathbf{rec} \ add = \lambda n. \mathbf{case} \ n \ \mathbf{of}$$

$$\{ \mathsf{Zero}() \to m$$

$$; \mathsf{Suc}(n) \to \mathsf{Suc}(add \ n)$$

$$\}$$

What is the value of the following expression?

$$\begin{array}{l} (\textbf{rec } foo = \lambda \, m. \, \lambda \, n. \, \textbf{case } n \, \textbf{of} \\ \mathsf{Zero}() \to m; \\ \mathsf{Suc}(n) \to \textbf{case } m \, \textbf{of} \, \{ \\ \mathsf{Zero}() \to \mathsf{Zero}(); \\ \mathsf{Suc}(m) \to foo \, m \, n \} \}) \\ \mathsf{Suc}(\mathsf{Suc}(\mathsf{Zero}())) \, \mathsf{Suc}(\mathsf{Zero}()) \end{array}$$

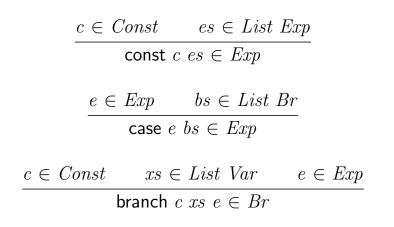
► Zero()
 ► Suc(Suc(Zero()))
 ► Suc(Suc(Suc(Zero())))

Abstract

syntax

$$\frac{x \in Var}{\operatorname{var} x \in Exp} \qquad \frac{e_1 \in Exp \quad e_2 \in Exp}{\operatorname{apply} e_1 \ e_2 \in Exp}$$
$$\frac{x \in Var \quad e \in Exp}{\operatorname{lambda} x \ e \in Exp} \qquad \frac{x \in Var \quad e \in Exp}{\operatorname{rec} x \ e \in Exp}$$

Var: Assumed to be countably infinite.



Const: Assumed to be countably infinite.

Operational semantics

- $e \Downarrow v$: e terminates with the value v.
- ▶ The expression e terminates if $\exists v. e \Downarrow v$.
- Note that a "crash" does not count as termination.
- ► The binary relation ↓ relates closed expressions.
- An expression is closed if it has no free variables.

Which of the following expressions are closed?

- ► y
- $\blacktriangleright \lambda x. \lambda y. x$
- case x of $\{Cons(x, xs) \rightarrow x\}$
- ▶ case Suc(Zero()) of $\{Suc(x) \rightarrow x\}$

•
$$\operatorname{rec} f = \lambda x. f$$

lambda $x \, \, e \Downarrow$ lambda $x \, \, e$

- ▶ e [x ← e']: Substitute e' for every free occurrence of x in e.
- To keep things simple: e' must be closed.
- ► If e' is not closed, then this definition is prone to variable capture.

Substitution

var
$$x [x \leftarrow e'] = e'$$

var $y [x \leftarrow e'] =$ var y if $x \neq y$

$$\begin{array}{l} \text{apply } e_1 \ e_2 \ [x \leftarrow e'] = \\ \text{apply } (e_1 \ [x \leftarrow e']) \ (e_2 \ [x \leftarrow e']) \end{array}$$

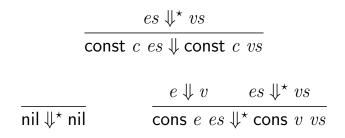
$$\begin{array}{ll} \mathsf{lambda} \ x \ e \ [x \leftarrow e'] = \mathsf{lambda} \ x \ e \\ \mathsf{lambda} \ y \ e \ [x \leftarrow e'] = \\ \mathsf{lambda} \ y \ (e \ [x \leftarrow e']) & \mathsf{if} \ x \neq y \end{array}$$

And so on...

What is the result of

 $(\mathbf{rec} \ y = \mathbf{case} \ x \ \mathbf{of} \ \{\mathsf{C}() \to x; \mathsf{D}(x) \to x\}) \ [x \leftarrow \lambda \ z. \ z]?$

$$\begin{array}{ll} \operatorname{rec} y = \operatorname{case} x & \operatorname{of} \left\{ \mathsf{C}() \to x; & \mathsf{D}(x) & \to x \\ \operatorname{rec} y = \operatorname{case} x & \operatorname{of} \left\{ \mathsf{C}() \to \lambda z. z; \mathsf{D}(x) & \to x \\ \end{array} \right\} \\ \operatorname{rec} y = \operatorname{case} \lambda z. z & \operatorname{of} \left\{ \mathsf{C}() \to x; & \mathsf{D}(x) & \to x \\ \end{array} \right\} \\ \operatorname{rec} y = \operatorname{case} \lambda z. z & \operatorname{of} \left\{ \mathsf{C}() \to \lambda z. z; \mathsf{D}(x) & \to x \\ \end{array} \right\} \\ \operatorname{rec} y = \operatorname{case} \lambda z. z & \operatorname{of} \left\{ \mathsf{C}() \to \lambda z. z; \mathsf{D}(x) & \to \lambda z. z \\ \end{array} \\ \operatorname{rec} y = \operatorname{case} \lambda z. z & \operatorname{of} \left\{ \mathsf{C}() \to \lambda z. z; \mathsf{D}(x) & \to \lambda z. z \\ \end{array} \right\} \\ \operatorname{rec} y = \operatorname{case} \lambda z. z & \operatorname{of} \left\{ \mathsf{C}() \to \lambda z. z; \mathsf{D}(\lambda z. z) \to \lambda z. z \\ \end{array}$$



	nil ↓ * nil	nil ↓* nil
$lambda\;x\;(var\;x)\Downarrow$	$\overline{const\ c\ nil\ \Downarrow}$	$\overline{var\ x\ [x \leftarrow const\ c\ nil]} \Downarrow$
lambda $x \; (var \; x)$	$const\ c nil$	const c nil
apply (lambda x (var x)) (const c nil) \Downarrow const c nil		

 $\frac{e \Downarrow \mathsf{const} \ c \ vs \qquad Lookup \ c \ bs \ xs \ e'}{e' \ [xs \leftarrow vs] \mapsto e'' \qquad e'' \Downarrow v}$ $\frac{c \And vs \bowtie v}{\mathsf{case} \ e \ bs \Downarrow v}$

$$\frac{e \Downarrow \mathsf{const} \ c \ vs \qquad Lookup \ c \ bs \ xs \ e'}{e' \ [xs \leftarrow vs] \mapsto e'' \qquad e'' \Downarrow v}$$

$$\frac{c \And c \ ss \ e \ bs \Downarrow v}{\mathsf{case} \ e \ bs \Downarrow v}$$

The first matching branch, if any:

Lookup c (cons (branch c xs e) bs) xs e $\frac{c \neq c' \quad Lookup \ c \ bs \ xs \ e}{Lookup \ c \ (cons \ (branch \ c' \ xs' \ e') \ bs) \ xs \ e}$

$$\frac{e \Downarrow \mathsf{const} \ c \ vs}{e' \ [xs \leftarrow vs] \mapsto e'' \ e'' \Downarrow v} \frac{bs \ xs \ e'}{\mathsf{case} \ e \ bs \Downarrow v}$$

$$e \ [xs \leftarrow vs] \mapsto e' \text{ holds iff}$$

$$\bullet \text{ there is some } n \text{ such that}$$

$$xs = \cos x_1 \ (...(\cos x_n \text{ nil})) \text{ and}$$

$$vs = \cos v_1 \ (...(\cos v_n \text{ nil})), \text{ and}$$

$$\bullet e' = ((e \ [x_n \leftarrow v_n])...) \ [x_1 \leftarrow v_1].$$

$$e \Downarrow \mathsf{const} \ c \ vs \qquad Lookup \ c \ bs \ xs \ e' \\ e' \ [xs \leftarrow vs] \mapsto e'' \qquad e'' \ \Downarrow v \\ \hline \mathsf{case} \ e \ bs \Downarrow v \\ \end{cases}$$

$$\overline{e \; [\mathsf{nil} \leftarrow \mathsf{nil}] \mapsto e}$$

$$e \; [xs \leftarrow vs] \mapsto e'$$

$$\overline{e \; [\mathsf{cons} \; x \; xs \leftarrow \mathsf{cons} \; v \; vs] \mapsto e' \; [x \leftarrow v]}$$

Which of the following sets are inhabited?

 $\begin{array}{l} \mathbf{case} \ \mathsf{C}() \ \mathbf{of} \ \{\mathsf{C}() \rightarrow \mathsf{D}(); \mathsf{C}() \rightarrow \mathsf{C}() \ \} \Downarrow \mathsf{C}() \\ \mathbf{case} \ \mathsf{C}() \ \mathbf{of} \ \{\mathsf{C}() \rightarrow \mathsf{D}(); \mathsf{C}() \rightarrow \mathsf{C}() \ \} \Downarrow \mathsf{D}() \\ \mathbf{case} \ \mathsf{C}() \ \mathbf{of} \ \{\mathsf{C}(x) \rightarrow \mathsf{D}(); \mathsf{C}() \rightarrow \mathsf{D}() \} \Downarrow \mathsf{D}() \\ \mathbf{case} \ \mathsf{C}(\mathsf{C}(), \mathsf{D}()) \ \mathbf{of} \ \{\mathsf{C}(x, x) \rightarrow x \ \} \Downarrow \mathsf{C}() \\ \mathbf{case} \ \mathsf{Suc}(\mathsf{False}()) \ \mathbf{of} \\ \{\mathsf{Zero}() \rightarrow \mathsf{True}(); \mathsf{Suc}(n) \rightarrow n \ \} \Downarrow \mathsf{False}() \end{array}$

case Suc(False()) of

 $\{\mathsf{Zero}() \to \mathsf{True}(); \mathsf{Suc}() \to \mathsf{False}()\} \Downarrow \mathsf{False}()$

Some properties

The semantics is deterministic: $e \Downarrow v_1$ and $e \Downarrow v_2$ imply $v_1 = v_2$.

- An expression e is called a value if $e \Downarrow e$.
- ► Values can be characterised inductively:

Values es

Value (lambda x e)Value (const c es) $\overline{Values nil}$ $\overline{Value \ e}$ Values es $\overline{Values nil}$ $\overline{Values (cons \ e \ es)}$

Value e holds iff e ↓ e.
If e ↓ v, then Value v.

There is a non-terminating expression

- ► The program rec x (var x) does not terminate with a value.
- ▶ Recall the rule for rec: $\frac{e \ [x \leftarrow \text{rec } x \ e \] \Downarrow v}{\text{rec } x \ e \Downarrow v}$.
- Note that var x [x ← rec x (var x)] = rec x (var x).
 Idea:

$$\begin{array}{l} \operatorname{rec} x \ (\operatorname{var} x) & \to \\ \operatorname{var} x \ [x \leftarrow \operatorname{rec} x \ (\operatorname{var} x)] = \\ \operatorname{rec} x \ (\operatorname{var} x) & \to \\ \vdots \end{array}$$

There is a non-terminating expression

If the program did terminate, then there would be a *finite* derivation of the following form:

$$rec x (var x) \Downarrow v$$

 Exercise: Prove more formally that this is impossible, using induction on the structure of the semantics.

The halting problem

There is no closed expression halts such that, for every closed expression p,

- ▶ $halts (\lambda x. p) \Downarrow True()$, if p terminates, and
- ► halts $(\lambda x. p) \Downarrow \mathsf{False}()$, otherwise.

Note the abuse of notation:

- The variables *halts* and *p* are not χ variables.
- Meta-variables standing for χ expressions.
- An alternative is to use abstract syntax:

apply *halts* (lambda $\underline{x} p$) \Downarrow const <u>*True*</u> nil apply *halts* (lambda $\underline{x} p$) \Downarrow const <u>*False*</u> nil

(For *distinct* <u>True</u>, <u>False</u> ∈ Const.)
More verbose.

- Assume that *halts* can be defined.
- Define $terminv \in Exp \rightarrow Exp$:

terminv
$$p = \text{case halts } (\lambda x. p) \text{ of}$$

 $\{ \text{True}() \rightarrow \text{rec } x = x$
 $; \text{False}() \rightarrow \text{Zero}()$
 $\}$

 For any closed expression p: terminv p terminates iff p does not terminate.

- ► Now consider the closed expression strange defined by rec p = terminv p.
- We get a contradiction:

- Note that we apply *halts* to a program, not to the source code of a program.
- ▶ How can source code be represented?

Representing inductively defined sets

Natural numbers

One method:

- ▶ Notation: $\lceil n \rceil \in Exp$ represents $n \in \mathbb{N}$.
- Representation:

$$\begin{bmatrix} \text{zero} \end{bmatrix} = \text{Zero}()$$

 $\begin{bmatrix} \text{suc} \ n \end{bmatrix} = \text{Suc}(\begin{bmatrix} n \end{bmatrix})$

Natural numbers

One method:

- ▶ Notation: $\lceil n \rceil \in Exp$ represents $n \in \mathbb{N}$.
- Representation:

$$\begin{bmatrix} \text{zero} \end{bmatrix} = \text{Zero}()$$

 $\begin{bmatrix} \text{suc} \ n \end{bmatrix} = \text{Suc}(\begin{bmatrix} n \end{bmatrix})$

Note that the concrete syntax should be interpreted as abstract syntax:

$$\begin{bmatrix} \text{zero} \end{bmatrix} = \text{const } \underline{Zero} \text{ nil} \\ \begin{bmatrix} \text{suc } n \end{bmatrix} = \text{const } \underline{Suc} (\text{cons} \lceil n \rceil \text{ nil}) \\ \end{bmatrix}$$

(For some distinct $\underline{Zero}, \underline{Suc} \in Const.$)

If elements in A can be represented, then elements in List A can also be represented:

Many inductively defined sets can be represented using constructor trees in analogous ways.

- ► *Var*: Countably infinite.
- ► Thus each variable x ∈ Var can be assigned a unique natural number code x ∈ N.
- ▶ Define $\lceil x \rceil = \lceil code \ x \rceil$.
- ► Similarly for constants.

- ► *Var*: Countably infinite.
- ► Thus each variable x ∈ Var can be assigned a unique natural number code x ∈ N.
- Define $\lceil x \rceil^{Var} = \lceil code \ x \rceil^{\mathbb{N}}$.
- ► Similarly for constants.

 $\begin{bmatrix} \operatorname{var} x & \overline{} & = \operatorname{Var}(\begin{bmatrix} x & \overline{} \\ \end{array}) \\ = \operatorname{Apply}(\begin{bmatrix} e_1 & \overline{}, \begin{bmatrix} e_2 & \overline{} \\ \end{array}) \\ = \operatorname{Lambda}(\begin{bmatrix} x & \overline{}, \begin{bmatrix} e & \overline{} \\ \end{array}) \\ = \operatorname{Rec}(\begin{bmatrix} x & \overline{}, \begin{bmatrix} e & \overline{} \\ \end{array}) \\ = \operatorname{Const}(\begin{bmatrix} c & \overline{}, \begin{bmatrix} es & \overline{} \\ \end{array}) \\ = \operatorname{Case}(\begin{bmatrix} e & \overline{}, \begin{bmatrix} es & \overline{} \\ \end{array}) \\ = \operatorname{Branch}(\begin{bmatrix} c & \overline{}, \begin{bmatrix} xs & \overline{}, \begin{bmatrix} e & \overline{} \\ \end{array}) \\ = \operatorname{Branch}(\begin{bmatrix} c & \overline{}, \begin{bmatrix} xs & \overline{}, \begin{bmatrix} e & \overline{} \\ \end{array}) \\ = \operatorname{Branch}(\begin{bmatrix} c & \overline{}, \begin{bmatrix} xs & \overline{}, \begin{bmatrix} e & \overline{} \\ \end{array}) \\ = \operatorname{Branch}(\begin{bmatrix} c & \overline{}, \begin{bmatrix} xs & \overline{}, \begin{bmatrix} e & \overline{} \\ \end{array}) \\ = \operatorname{Branch}(\begin{bmatrix} c & \overline{}, \begin{bmatrix} xs & \overline{}, \begin{bmatrix} e & \overline{} \\ \end{array}) \\ = \operatorname{Branch}(\begin{bmatrix} c & \overline{}, \begin{bmatrix} xs & \overline{}, \begin{bmatrix} e & \overline{} \\ \end{array}) \\ = \operatorname{Branch}(\begin{bmatrix} x & \overline{}, \begin{bmatrix} xs & \overline{}, \begin{bmatrix} e & \overline{} \\ \end{array}) \\ = \operatorname{Branch}(\begin{bmatrix} x & \overline{}, \begin{bmatrix} xs & \overline{}, \begin{bmatrix} e & \overline{} \\ \end{array}) \\ = \operatorname{Branch}(\begin{bmatrix} x & \overline{}, \begin{bmatrix} xs & \overline{}, \begin{bmatrix} e & \overline{} \\ xs & \overline{} \\ \end{array}) \\ = \operatorname{Branch}(\begin{bmatrix} x & \overline{}, \begin{bmatrix} xs & \overline{}, \begin{bmatrix} e & \overline{} \\ xs & \overline{} \\ xs & \overline{} \\ xs & \overline{} \\ xs & \overline{x} & \overline{x} \\ xs & \overline{x} & \overline{x} \\ xs & \overline{x} \\ xs & \overline{x} & \overline{x} & \overline{x} \\ xs & \overline{x} \\ xs & \overline{x} & \overline{x} \\ xs & \overline{x} & \overline{x} \\ xs & \overline{x}$

Example

- Concrete syntax: $\lambda x. \operatorname{Suc}(x)$.
- Abstract syntax:

lambda \underline{x} (const \underline{Suc} (cons (var \underline{x}) nil)) (for some $\underline{x} \in Var$ and $\underline{Suc} \in Const$). • Representation (concrete syntax): Lambda($\lceil x \rceil$,

 $\mathsf{Const}(\lceil \underline{Suc} \rceil, \mathsf{Cons}(\mathsf{Var}(\lceil \underline{x} \rceil), \mathsf{Nil}())))$

• If \underline{x} and \underline{Suc} both correspond to zero:

 $\begin{array}{c} \mathsf{Lambda}(\mathsf{Zero}(),\\ \mathsf{Const}(\mathsf{Zero}(),\\ \mathsf{Cons}(\mathsf{Var}(\mathsf{Zero}()),\mathsf{Nil}()))) \end{array}$

Example

Representation (abstract syntax):

```
const Lambda (
  cons (const Zero nil) (
  cons (const Const (
     cons (const Zero nil) (
     cons (const Cons (
       cons (const Var (cons (const Zero nil) nil)) (
       cons (const Nil nil)
       nil)))
     nil)))
  nil))
```


How is rec x = x represented? Assume that x corresponds to 1.

- $\blacktriangleright \operatorname{Rec}(\mathsf{X}(),\mathsf{X}())$
- $\blacktriangleright \ \mathsf{Rec}(\mathsf{X}(),\mathsf{Var}(\mathsf{X}()))$
- ► Equals(Rec(X()), X())
- $\blacktriangleright \ \mathsf{Rec}(\mathsf{Suc}(\mathsf{Zero}()),\mathsf{Suc}(\mathsf{Zero}()))$
- ► Rec(Suc(Zero()), Var(Suc(Zero())))
- ► Equals(Rec(Suc(Zero())), Suc(Zero()))

The halting problem, take two

The intensional halting problem (with self-application)

There is no closed expression halts such that, for every closed expression p,

- ▶ $halts \lceil p \rceil \Downarrow True()$, if $p \lceil p \rceil$ terminates, and
- ▶ $halts \ p \ \forall False(), otherwise.$

With self-application

- ▶ Assume that *halts* can be defined.
- ► Define the closed expression *terminv*:

$$terminv = \lambda p. \mathbf{case} \ halts \ p \ \mathbf{of} \\ \{ \mathsf{True}() \rightarrow \mathsf{rec} \ x = x \\ ; \mathsf{False}() \rightarrow \mathsf{Zero}() \\ \}$$

- ► For any closed expression p: terminv 「p] terminates iff p [p] does not terminate.
- Thus terminv 「terminv] terminates iff terminv 「terminv] does not terminate.

There is no closed expression halts such that, for every closed expression p,

- ▶ $halts \ p \ \forall \ True()$, if p terminates, and
- ▶ $halts \ p \ \forall \ False(), otherwise.$

- Assume that *halts* can be defined.
- If we can use *halts* to solve the previous variant of the halting problem, then we have found a contradiction.

Exercise: Define a closed expression *code* satisfying

$$code \ \lceil p \ \rceil \Downarrow \ \lceil p \ \rceil$$

for any closed expression p.

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

$$\lceil \lceil \lambda x. x \rceil \rceil$$

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

 $\lceil \lceil \mathsf{lambda} \ \underline{x} \ (\mathsf{var} \ \underline{x}) \rceil \rceil$

Exercise: Define a closed expression code satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

$$\lceil \mathsf{Lambda}(\lceil \underline{x} \rceil, \mathsf{Var}(\lceil \underline{x} \rceil)) \rceil$$

Exercise: Define a closed expression code satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

 $\begin{bmatrix} const \ \underline{Lambda} \\ cons \ (const \ \underline{Zero} \ nil) \\ cons \ \begin{bmatrix} Var(Zero()) \\ nil) \end{bmatrix}^{\neg}$

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

 $\begin{array}{l} \mathsf{Const}(\lceil \underline{Lambda} \rceil,\\ \mathsf{Cons}(\mathsf{Const}(\lceil \underline{Zero} \rceil,\mathsf{Nil}()),\\ \mathsf{Cons}(\mathsf{Const}(\lceil \underline{Var} \rceil,\\ \mathsf{Cons}(\mathsf{Const}(\lceil \underline{Zero} \rceil,\mathsf{Nil}()),\\ \mathsf{Nil}())),\\ \mathsf{Nil}())), \end{array}$

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

 $\begin{array}{lll} & \mathsf{Const}(\mathsf{Suc}(\mathsf{Zero}()), \\ & \mathsf{Cons}(\mathsf{Const}(\mathsf{Suc}(\mathsf{Suc}(\mathsf{Zero}())), \mathsf{Nil}()), \\ & \mathsf{Cons}(\mathsf{Const}(\mathsf{Suc}(\mathsf{Suc}(\mathsf{Zero}()))), \\ & \mathsf{Cons}(\mathsf{Const}(\mathsf{Suc}(\mathsf{Suc}(\mathsf{Zero}())), \mathsf{Nil}()), \\ & \mathsf{Nil}())), \\ & \mathsf{Nil}())) \end{array}$

Define the closed expression halts' by

 $\lambda p. halts Apply(p, code p).$

For any closed expression *p*:

 $\begin{array}{ll}p \ulcorner p \urcorner \text{terminates} & \Rightarrow \\ halts \ulcorner p \ulcorner p \urcorner \urcorner & \Downarrow \text{True}() & \Rightarrow \\ halts \text{Apply}(\ulcorner p \urcorner, \ulcorner p \urcorner \urcorner) & \Downarrow \text{True}() & \Rightarrow \\ halts \text{Apply}(\ulcorner p \urcorner, code \ulcorner p \urcorner) & \Downarrow \text{True}() & \Rightarrow \\ halts' \ulcorner p \urcorner & \Downarrow \text{True}() & \end{array}$

Define the closed expression halts' by

 $\lambda p. halts Apply(p, code p).$

For any closed expression *p*:

 $\begin{array}{ll}p \ulcorner p \urcorner \text{does not terminate} & \Rightarrow \\ halts \ulcorner p \ulcorner p \urcorner \urcorner & \Downarrow \text{False}() & \Rightarrow \\ halts \text{Apply}(\ulcorner p \urcorner, \ulcorner p \urcorner) & \Downarrow \text{False}() & \Rightarrow \\ halts \text{Apply}(\ulcorner p \urcorner, code \ulcorner p \urcorner) & \Downarrow \text{False}() & \Rightarrow \\ halts' \ulcorner p \urcorner & \Downarrow \text{False}() & \Rightarrow \\ \end{array}$

Thus *halts'* solves the previous variant of the halting problem, and we have found a contradiction.

- Concrete and abstract syntax.
- Operational semantics.
- ► Several variants of the halting problem.
- Representing inductively defined sets.