Lecture
 Models of Computation (DIT310, TDA184)

Nils Anders Danielsson
2017-11-06

Today

- Inductive definitions:
- Functions defined by primitive recursion.
- Proofs by structural induction.
- Two models of computation:
- PRF.
- The recursive functions.

Natural

numbers

The natural numbers

The set of natural numbers, \mathbb{N}, is defined inductively in the following way:

- zero $\in \mathbb{N}$.
- If $n \in \mathbb{N}$, then suc $n \in \mathbb{N}$.

The natural numbers

We can construct natural numbers by using these rules a finite number of times. Examples:

- $0=$ zero.
- 1 = suc zero.
- $2=$ suc (suc zero).

The value zero and the function suc are called constructors.

The natural numbers

An alternative way to present the rules:

Propositions, predicates and relations

- A proposition is something that can (perhaps) be proved or disproved.
- A predicate on a set A is a function from A to propositions.
- A binary relation on two sets A and B is a function from A and B to propositions.
- Relations can also have more arguments.

Equality

Two natural numbers are equal if they are built up by the same constructors.
We can see this as an inductively defined relation:

$$
\frac{m=n}{\text { zero }=\text { zero }} \quad \frac{m}{\text { suc } m=\operatorname{suc} n}
$$

(The names of the constructors have been omitted.)

Primitive recursion

We can define a function from \mathbb{N} to a set A in the following way:

- A value $z \in A$, the function's value for zero.
- A function $s \in \mathbb{N} \rightarrow A \rightarrow A$, that given $n \in \mathbb{N}$ and the function's value for n gives the function's value for suc n.

Primitive recursion

A definition by primitive recursion can be given the following schematic form:

$$
\begin{aligned}
& f \in \mathbb{N} \rightarrow A \\
& f \text { zero }=z \\
& f(\text { suc } n)=s n(f n)
\end{aligned}
$$

Primitive recursion

We can capture this scheme with a higher-order function:

$$
\begin{aligned}
& \operatorname{rec} \in A \rightarrow(\mathbb{N} \rightarrow A \rightarrow A) \rightarrow \mathbb{N} \rightarrow A \\
& \operatorname{rec} z s \text { zero }=z \\
& \operatorname{rec} z s(\operatorname{suc} n)=s n(\operatorname{rec} z s n)
\end{aligned}
$$

Example: Addition

- Can we define $a d d \in \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ using primitive recursion?
- Let " A " be $\mathbb{N} \rightarrow \mathbb{N}$.
- Scheme:

$$
\begin{aligned}
& a d d \in \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N}) \\
& a d d \text { zero }=? \\
& \text { add }(\text { suc } m)=?
\end{aligned}
$$

Example: Addition

- Can we define $a d d \in \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ using primitive recursion?
- Let " A " be $\mathbb{N} \rightarrow \mathbb{N}$.
- Scheme:

$$
\begin{aligned}
& a d d \in \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N}) \\
& a d d \text { zero }=\lambda n . n \\
& a d d(\text { suc } m)=?
\end{aligned}
$$

Example: Addition

- Can we define $a d d \in \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ using primitive recursion?
- Let " A " be $\mathbb{N} \rightarrow \mathbb{N}$.
- Scheme:

$$
\begin{aligned}
& \text { add } \in \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N}) \\
& \text { add zero }=\lambda n . n \\
& \text { add }(\text { suc } m)=\lambda n . ?
\end{aligned}
$$

Example: Addition

- Can we define $a d d \in \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ using primitive recursion?
- Let " A " be $\mathbb{N} \rightarrow \mathbb{N}$.
- Scheme:

$$
\begin{aligned}
& a d d \in \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N}) \\
& a d d \text { zero }=\lambda n . n \\
& a d d(\text { suc } m)=\lambda n . \operatorname{suc}(a d d m n)
\end{aligned}
$$

Quiz

Which of the following terms define addition?

- $\operatorname{rec}(\lambda n . n)(\lambda m r$. λn. suc $(r m n))$
- $\operatorname{rec}(\lambda n . n)(\lambda m r . \lambda n$.suc $(r n))$
- $\operatorname{rec}(\lambda n . n)(\lambda m r$. λn. suc $(r m))$

Structural induction

Let us assume that we have a predicate P on \mathbb{N}. If we can prove the following two statements, then we have proved $\forall n$. $P n$:

- P zero.
- $\forall n$. P implies P (suc n).

Example: Addition

Theorem: $\forall m \in \mathbb{N}$. add m zero $=m$.
Proof:

- Let us use structural induction, with the predicate $P=\lambda m$. add m zero $=m$.
- There are two cases:

$$
\begin{array}{ll}
P \text { zero } & \Leftarrow\{\text { By definition. }\} \\
\text { add zero zero }=\text { zero } & \Leftarrow\{\text { By definition. }\} \\
\text { zero }=\text { zero } &
\end{array}
$$

Example: Addition

Theorem: $\forall m \in \mathbb{N}$. add m zero $=m$.
Proof:

- Let us use structural induction, with the predicate $P=\lambda m$. add m zero $=m$.
- There are two cases:

$$
\begin{array}{ll}
P(\text { suc } m) & \Leftarrow \\
a d d(\text { suc } m) \text { zero }=\text { suc } m & \Leftarrow \\
\text { suc }(\text { add } m \text { zero })=\text { suc } m & \Leftarrow \\
\text { add } m \text { zero }=m & \Leftarrow \\
P m &
\end{array}
$$

More

inductively
defined sets

Cartesian products

The cartesian product of two sets A and B is defined inductively in the following way:

$$
\frac{x \in A \quad y \in B}{\text { pair } x y \in A \times B}
$$

Notice that this definition is "non-recursive".

Primitive recursion

Scheme for primitive recursion for pairs:

$$
\begin{aligned}
& f \in A \times B \rightarrow C \\
& f(\text { pair } x y)=p x y
\end{aligned}
$$

The corresponding higher-order function:

$$
\begin{aligned}
& \text { uncurry } \in(A \rightarrow B \rightarrow C) \rightarrow A \times B \rightarrow C \\
& \text { uncurry } p(\text { pair } x y)=p x y
\end{aligned}
$$

Structural induction

Let us assume that we have a predicate P on $A \times B$. If we can prove the following statement, then we have proved $\forall p . P p$:

- $\forall x y . P$ (pair $x y$).

Lists

The set of finite lists containing natural numbers is defined inductively in the following way:

$$
\frac{x \in \mathbb{N} \quad x s \in \text { Nat-list }}{\text { cons } x x s \in \text { Nat-list }}
$$

Primitive recursion

Scheme for primitive recursion for natural number lists:
$f \in$ Nat-list $\rightarrow A$
f nil $\quad=n$
$f($ cons $x x s)=c x x s(f x s)$
The corresponding higher-order function:

$$
\begin{aligned}
& \text { listrec } \in A \rightarrow(\mathbb{N} \rightarrow \text { Nat-list } \rightarrow A \rightarrow A) \rightarrow \\
& \text { Nat-list } \rightarrow A \\
& \text { listrec } n c \text { nil } \\
& =n \\
& \text { listrec } n c(\text { cons } x x s)=c x x s(\text { listrec } n c x s)
\end{aligned}
$$

Structural induction

Let us assume that we have a predicate P on Nat-list. If we can prove the following statements, then we have proved $\forall x s$. P xs:

- P nil.
- $\forall x$ xs. P xs implies P (cons $x x s$).

Pattern

- Do you see the pattern?
- Given an inductive definition of the kind presented here, we can derive:
- The structural induction principle.
- The primitive recursion scheme.

Quiz

Define the booleans inductively. How many cases does the structural induction principle have?

- 1
- 2
- 3
- 4

Bonus question: Can you think of an inductive definition for which the answer would be 0 ?

The primitive recursive functions

- A model of computation.
- Programs taking tuples of natural numbers to natural numbers.
- Every program is terminating.

Sketch

The primitive recursive functions can be constructed in the following ways:

$$
\begin{aligned}
& f()=0 \\
& f(x)=1+x \\
& f\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)=x_{k} \\
& f\left(x_{1}, \ldots, x_{n}\right)=g\left(h_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, h_{k}\left(x_{1}, \ldots, x_{n}\right)\right) \\
& f\left(x_{1}, \ldots, x_{n}, 0\right) \quad=g\left(x_{1}, \ldots, x_{n}\right) \\
& f\left(x_{1}, \ldots, x_{n}, 1+x\right)= \\
& \quad h\left(x_{1}, \ldots, x_{n}, f\left(x_{1}, \ldots, x_{n}, x\right), x\right)
\end{aligned}
$$

Vectors

Vectors, lists of a fixed length:

$$
\frac{x s \in A^{n} \quad x \in A}{x s, x \in A^{1+n}}
$$

Read nil, x, y, z as $((\operatorname{nil}, x), y), z$.

Indexing

An indexing operation can be defined by (a slight variant of) primitive recursion:

$$
\begin{aligned}
& \text { index } \in A^{n} \rightarrow\{i \in \mathbb{N} \mid 0 \leq i<n\} \rightarrow A \\
& \text { index }(x s, x) \text { zero }=x \\
& \text { index }(x s, x)(\text { suc } n)=\text { index xs } n
\end{aligned}
$$

Abstract syntax

$P R F_{n}$: Functions that take n arguments.

$$
\begin{aligned}
& \frac{f \in P R F_{m} \quad g s \in\left(P R F_{n}\right)^{m}}{\operatorname{comp} f g s \in P R F_{n}} \\
& \frac{f \in P R F_{n} \quad g \in P R F_{2+n}}{\operatorname{rec} f g \in P R F_{1+n}}
\end{aligned}
$$

Denotational semantics

$$
\begin{aligned}
& \llbracket 』 \in P R F_{n} \rightarrow\left(\mathbb{N}^{n} \rightarrow \mathbb{N}\right) \\
& \text { 【zero 』nil }=0 \\
& \llbracket \text { suc } \quad \rrbracket(\text { nil }, n) \quad=1+n \\
& \llbracket \operatorname{proj} i \quad \rrbracket \rho \quad=\operatorname{index} \rho i \\
& \llbracket \operatorname{comp} f g s \rrbracket \rho \quad=\llbracket f \rrbracket(\llbracket g s \rrbracket \star \rho) \\
& \llbracket \operatorname{rec} f g \quad \rrbracket(\rho, \text { zero })=\llbracket f \rrbracket \rho \\
& \llbracket \mathrm{rec} f g \quad \rrbracket(\rho, \text { suc } n)=\llbracket g \rrbracket(\rho, \llbracket \mathrm{rec} f g \rrbracket(\rho, n), n) \\
& \llbracket _\rrbracket \star \in\left(P R F_{m}\right)^{n} \rightarrow\left(\mathbb{N}^{m} \rightarrow \mathbb{N}^{n}\right) \\
& \llbracket \text { nil } \rrbracket \star \rho=\text { nil } \\
& \llbracket f s, f \rrbracket \star \rho=\llbracket f s \rrbracket \star \rho, \llbracket f \rrbracket \rho
\end{aligned}
$$

Denotational semantics

$$
\begin{aligned}
& \text { 【_】 } \in P R F_{n} \rightarrow\left(\mathbb{N}^{n} \rightarrow \mathbb{N}\right) \\
& \text { 【zero 』nil }=0 \\
& \llbracket \text { suc } \quad \rrbracket(\text { nil }, n)=1+n \\
& \llbracket \operatorname{proj} i \quad \rrbracket \rho \quad=\operatorname{index} \rho i \\
& \llbracket \operatorname{comp} f g s \rrbracket \rho \quad=\llbracket f \rrbracket(\llbracket g s \rrbracket \star \rho) \\
& \llbracket \operatorname{rec} f g \quad \rrbracket(\rho, n)=\operatorname{rec}(\llbracket f \rrbracket \rho) \\
& (\lambda n r . \llbracket g \rrbracket(\rho, r, n)) \\
& n \\
& \llbracket _\rrbracket \star \in\left(P R F_{m}\right)^{n} \rightarrow\left(\mathbb{N}^{m} \rightarrow \mathbb{N}^{n}\right) \\
& \text { 【nil 】 } \downarrow \rho=\mathrm{nil} \\
& \llbracket f s, f \rrbracket \star \rho=\llbracket f s \rrbracket \star \rho, \llbracket f \rrbracket \rho
\end{aligned}
$$

Quiz

Which of the following terms, all in $P R F_{2}$, define addition?

- rec (proj 0$)($ proj 0$)$
- rec (proj 0) (proj 1)
- rec (proj 0) (comp suc (nil, proj 0))
- rec (proj 0) (comp suc (nil, proj 1$)$)

Hint: Examine $\llbracket p \rrbracket($ nil $, m, n)$ for each program p.

Addition

Goal: Define add satisfying the following equations:

$$
\begin{gathered}
\forall m . \quad \llbracket a d d \rrbracket(\text { nil }, m, \text { zero })=m \\
\forall m n \cdot \llbracket a d d \rrbracket(\text { nil }, m, \text { suc } n)= \\
\operatorname{suc}(\llbracket a d d \rrbracket(\text { nil }, m, n))
\end{gathered}
$$

If we can find a definition of add satisfying these equations, then we can prove using structural induction that $a d d$ is an implementation of addition.

Addition

Perhaps we can use rec:

$$
\begin{gathered}
\forall m . \quad \llbracket \mathrm{rec} f g \rrbracket(\text { nil, } m \text {, zero })=m \\
\forall m n \cdot \llbracket \mathrm{rec} f g \rrbracket(\text { nil, } m \text {, suc } n)= \\
\operatorname{suc}(\llbracket \mathrm{rec} f g \rrbracket(\text { nil }, m, n))
\end{gathered}
$$

Addition

Perhaps we can use rec:

$$
\begin{gathered}
\forall m . \quad \llbracket f \rrbracket(\text { nil }, m) \\
\forall m n \cdot \llbracket \mathrm{rec} f g \rrbracket(\text { nil }, m, \text { suc } n)= \\
\operatorname{suc}(\llbracket \mathrm{rec} f g \rrbracket(\text { nil }, m, n))
\end{gathered}
$$

Addition

Perhaps we can use rec:

$$
\begin{aligned}
& \forall m . \quad \llbracket f \rrbracket(\text { nil, } m) \\
& \forall m n \cdot \llbracket g \rrbracket \text { (nil, } m, \llbracket \text { rec } f g \rrbracket(\text { nil }, m, n), n)=m \\
& \text { suc }(\llbracket \text { rec } f g \rrbracket(\text { nil }, m, n))
\end{aligned}
$$

Addition

The zero case:

$$
\forall m \cdot \llbracket f \rrbracket(\text { nil }, m)=m
$$

Addition

The zero case:

$$
\forall m \cdot \llbracket \operatorname{proj} 0 \rrbracket(\text { nil }, m)=m
$$

Addition

The suc case:

$$
\begin{gathered}
\forall m n \cdot \llbracket g \rrbracket(\text { nil }, m, \llbracket \mathrm{rec} f g \rrbracket(\mathrm{nil}, m, n), n)= \\
\operatorname{suc}(\llbracket \operatorname{rec} f g \rrbracket(\text { nil }, m, n))
\end{gathered}
$$

Addition

The suc case:
$\forall m n r . \llbracket g \rrbracket($ nil $, m, r, n)=\operatorname{suc} r$

Addition

The suc case:
$\forall m n r . \llbracket \operatorname{comp} h h s \rrbracket($ nil $, m, r, n)=$ suc r

Addition

The suc case:
$\forall m n r . \llbracket h \rrbracket(\llbracket h s \rrbracket \star($ nil $, m, r, n))=\operatorname{suc} r$

Addition

The suc case:
$\forall m n r . \llbracket \mathrm{suc} \rrbracket(\llbracket \mathrm{nil}, k \rrbracket \star($ nil $, m, r, n))=$ suc r

Addition

The suc case:
$\forall m n r . \llbracket$ suc $\rrbracket($ nil,$\llbracket k \rrbracket($ nil $, m, r, n))=$ suc r

Addition

The suc case:
$\forall m n r . \operatorname{suc}(\llbracket k \rrbracket($ nil $, m, r, n))=\operatorname{suc} r$

Addition

The suc case:

$$
\forall m n r . \llbracket k \rrbracket(\mathrm{nil}, m, r, n)=r
$$

Addition

The suc case:
$\forall m n r . \llbracket p r o j 1 \rrbracket($ nil $, m, r, n)=r$

Addition

We end up with the following definition:
rec (proj 0) (comp suc (nil, proj 1))

Big-step operational semantics

$$
\overline{\text { zero }[\text { nil }] \Downarrow 0} \quad \overline{\operatorname{suc}[\text { nil }, n] \Downarrow 1+n}
$$

$\overline{\operatorname{proj} i[\rho] \Downarrow \text { index } \rho i}$

$$
\frac{f[\rho] \Downarrow n}{\operatorname{rec} f g[\rho, \text { zero }] \Downarrow n}
$$

$$
\frac{g[\rho, n, m] \Downarrow o}{\operatorname{rec} f g[\rho, \text { suc } m] \Downarrow o}
$$

Big-step operational semantics

$$
\frac{g s[\rho] \Downarrow^{\star} \rho^{\prime} \quad f\left[\rho^{\prime}\right] \Downarrow n}{\operatorname{comp} f g s[\rho] \Downarrow n}
$$

$\overline{\text { nil }[\rho] \Downarrow^{\star} \text { nil }}$

$$
\frac{f_{s}[\rho] \Downarrow^{\star} n s \quad f[\rho] \Downarrow n}{f s, f[\rho] \Downarrow^{\star} n s, n}
$$

Equivalence

$$
\begin{aligned}
& f[\rho] \Downarrow n \text { iff } \llbracket f \rrbracket \rho=n, \\
& f_{s}[\rho] \Downarrow^{\star} \rho^{\prime} \text { iff } \llbracket f s \rrbracket \star \rho=\rho^{\prime} .
\end{aligned}
$$

This can be proved by induction on the structure of the semantics in one direction, and $f / f s$ in the other.

Equivalence

Thus the operational semantics is total and deterministic:

- $\forall f \rho . \exists n . f[\rho] \Downarrow n$.
- $\forall f \rho m n$.
$f[\rho] \Downarrow m$ and $f[\rho] \Downarrow n$ implies $m=n$.

Quiz

Which of the following propositions are true?

- comp zero nil [nil, 5, 7] $\Downarrow 0$
- comp suc (nil, proj 0) [nil, 5, 7] $\Downarrow 6$
- rec zero (proj 1) [nil, 2] $\Downarrow 0$

Expressiveness

Not every (Turing-) computable function is primitive recursive.

Proof sketch:

- Assume that every computable function $f \in \mathbb{N} \rightarrow \mathbb{N}$ is represented by $f \in P R F_{1}$ satisfying $\forall n . \llbracket f \rrbracket($ nil,$n)=f n$.
- Exercise:

Define a function code $\in P R F_{1} \rightarrow \mathbb{N}$ with a computable left inverse decode.

Expressiveness

- Define $g \in \mathbb{N} \rightarrow \mathbb{N}$ by

$$
g n=\llbracket \text { decode } n \rrbracket(\text { nil }, n)+1 .
$$

- Note that g is computable.
- We get

$$
\begin{array}{lr}
g(\operatorname{code} \underline{g}) & = \\
\llbracket d e \operatorname{code}(\operatorname{code} \underline{g}) \rrbracket(\text { nil }, \operatorname{code} \underline{g})+1= \\
\llbracket \underline{g \rrbracket(\text { nil }, \operatorname{code} \underline{g})+1}= \\
g(\text { code } \underline{g})+1, & =
\end{array}
$$

which is impossible.

No self-interpreter

There is no program eval $\in P R F_{2}$ satisfying

$$
\forall m, n \in \mathbb{N} . \llbracket e v a l \rrbracket(\mathrm{nil}, m, n)=\llbracket \text { decode } m \rrbracket(\mathrm{nil}, n) .
$$

Proof sketch:

- Define $g \in P R F_{1}$ by comp suc (nil, comp eval (nil, proj 0, proj 0)).
- This function satisfies

$$
\llbracket g \rrbracket(\text { nil }, n)=\llbracket d e c o d e ~ n \rrbracket(\text { nil }, n)+1
$$

No self-interpreter

There is no program eval $\in P R F_{2}$ satisfying

$$
\forall m, n \in \mathbb{N} . \llbracket e v a l \rrbracket(\text { nil }, m, n)=\llbracket \text { decode } m \rrbracket(\text { nil }, n) .
$$

Exercise:

- Prove that no program eval $\in P R F_{1}$ satisfies

$$
\begin{gathered}
\forall m, n \in \mathbb{N} . \llbracket \text { eval }\left(\text { nil }, 2^{m} * 3^{n}\right)= \\
\llbracket \text { decode } m \rrbracket(\text { nil }, n) .
\end{gathered}
$$

The Ackermann function

- Another example of a computable function that is not primitive recursive.
- One variant:

$$
\begin{aligned}
& \operatorname{ack} \in \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\
& \operatorname{ack}(\text { zero }, n) \quad=\operatorname{suc} n \\
& \operatorname{ack}(\text { suc } m, \text { zero }) \\
& =\operatorname{ack}(m, \text { suc zero }) \\
& \operatorname{ack}(\text { suc } m, \text { suc } n)
\end{aligned}=\operatorname{ack}(m, \operatorname{ack}(\text { suc } m, n)) .
$$

- For more details, see Nordström, The primitive recursive functions.

$$
\begin{aligned}
& \text { The } \\
& \text { recursive } \\
& \text { functions }
\end{aligned}
$$

The recursive functions

- A model of computation.
- Programs taking tuples of natural numbers to natural numbers.
- Not every program is terminating.

Abstract syntax

- Extends PRF with one additional constructor.
- $R F_{n}$: Functions that take n arguments.
- Minimisation:

$$
\frac{f \in R F_{1+n}}{\min f \in R F_{n}}
$$

- Rough idea: $\min f[\rho]$ is the smallest n for which $f[\rho, n]$ is 0 .
- Note that there may not be such a number.

Big-step operational semantics

The operational semantics is extended:

$$
\begin{gathered}
f[\rho, n] \Downarrow 0 \\
\forall m<n . \exists k \in \mathbb{N} . f[\rho, m] \Downarrow 1+k \\
\min f[\rho] \Downarrow n
\end{gathered}
$$

Big-step operational semantics

The operational semantics is extended:

$$
\begin{gathered}
f[\rho, n] \Downarrow 0 \\
\forall m<n . \exists k \in \mathbb{N} . f[\rho, m] \Downarrow 1+k \\
\min f[\rho] \Downarrow n
\end{gathered}
$$

The semantics is deterministic, but not total:

- $f[\rho] \Downarrow m$ and $f[\rho] \Downarrow n$ implies $m=n$.
- $\forall m . \exists f \in R F_{m} . \forall \rho . \nexists n . f[\rho] \Downarrow n$.
- Construct $f \in R F_{0}$ in such a way that $\nexists n . f[$ nil $] \Downarrow n$.

Denotational semantics?

We can try to extend the denotational semantics:

$$
\begin{aligned}
& \llbracket-\rrbracket \in R F_{n} \rightarrow\left(\mathbb{N}^{n} \rightarrow \mathbb{N}\right) \\
& \vdots \\
& \llbracket \min f \rrbracket \rho=\operatorname{search} f \rho 0 \\
& \\
& \text { search } \in R F_{1+n} \rightarrow \mathbb{N}^{n} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \\
& \text { search } f \rho n= \\
& \quad \text { if } \llbracket f \rrbracket(\rho, n)=0 \\
& \text { then } n \\
& \text { else search } f \rho(1+n)
\end{aligned}
$$

Partial functions

- This "definition" does not give rise to (total) functions.
- We can instead define a semantics as a function to partial functions:

$$
\begin{aligned}
& \llbracket-\rrbracket \in R F_{n} \rightarrow\left(\mathbb{N}^{n} \rightharpoonup \mathbb{N}\right) \\
& \llbracket f \rrbracket \rho= \\
& \text { if } \quad f[\rho] \Downarrow n \text { for some } n \\
& \text { then } n \\
& \text { else undefined }
\end{aligned}
$$

Expressiveness

- Equivalent to Turing machines, λ-calculus, ...

Summary

- Inductive definitions:
- Functions defined by primitive recursion.
- Proofs by structural induction.
- Two models of computation:
- PRF.
- The recursive functions.

