
whogrep.pl
#!/usr/bin/perl

#
f ile: whogrep.pl
purpose: run the UNIX ’who’ command and print lines matching the
pattern given as the first command line argument.
e.g.
unix> ./whogrep.pl "ˆk"
unix> ./whogrep.pl "ˆ[ˆ]{4} "
#

open(INPUT, "who |");

while (<INPUT>) {
if (/$ARGV[0]/) {

print;
}

}

Graham Kemp, Chalmers University of Technology

get_uniprot.pl

lynx is a general purpose browser for the Wor ld Wide Web.
The command:

unix> lynx -source URL

wr ites the HTML source of the document identified by the given URL to
standard output.

#!/usr/bin/perl

open(INPUT,
"lynx -source http://www.expasy.org/uniprot/$ARGV[0].txt |");

while (<INPUT>) {
print;

}

Graham Kemp, Chalmers University of Technology

draw_mol.pl (1)

#!/usr/bin/perl

open(PDB_FILE, "1itb.pdb") ||
die "Can’t open 1itb.pdb: $!\n";

open(OUT_A, ">chainA") || die "Can’t open xy_A: $!\n";
open(OUT_B, ">chainB") || die "Can’t open xy_B: $!\n";

while (<PDB_FILE>) {
if (/ˆATOM.* CA .* A /) {

print OUT_A substr($_, 30, 16), "\n";
} e lsif (/ˆATOM.* CA .* B /) {

print OUT_B substr($_, 30, 16), "\n";
}

}

Graham Kemp, Chalmers University of Technology

draw_mol.pl (2)

close OUT_A;
close OUT_B;

open(GNUPLOT, "| gnuplot > picture.eps");

print GNUPLOT <<EOF;
set terminal postscript eps
plot "chainA" with lines, "chainB" with lines
exit
EOF

We can then view the file picture.eps with a PostScr ipt previewer, such as
gv.

Graham Kemp, Chalmers University of Technology

long est_sub.pl
#!/usr/bin/perl
$sequence = "";
while (<>) { # Read sequence in FASTA format

chomp;
if (/ˆ[ˆ>]/) {

$sequence .= uc($_);
}

}
$n = length($sequence);
$reverse_complement = reverse($sequence);
$reverse_complement =˜ tr/ACGT/TGCA/;
$_ = $sequence . "X" . $reverse_complement;
while ($n > 0) {

if (/(.{$n}).*X.*\1/) {
print $1, "\n";
$n = 0;

} e lse {
$n--;

}
}

Graham Kemp, Chalmers University of Technology

All the same

Can test whether all of the characters match with the first character of the
str ing:

/ˆ(.)\1*$/

• The first character of the string matches with (.)

• This is followed by zero or more occurrences of the same character.

• The $ ensures that there are no other characters in the string.

Graham Kemp, Chalmers University of Technology

cpg_islands.pl (incomplete)

#!/usr/bin/perl

%log_likelyhood_ratio = (
"AA" => -0.740, "AC" => 0.419, "AG" => 0.580, "AT" => -0.803,
"CA" => -0.913, "CC" => 0.302, "CG" => 1.812, "CT" => -0.685,
"GA" => -0.624, "GC" => 0.461, "GG" => 0.331, "GT" => -0.730,
"TA" => -1.169, "TC" => 0.573, "TG" => 0.393, "TT" => -0.679);

#
Read sequence in FASTA format.
#

$sequence = "";
while (<>) {

chomp;
if (/ˆ[ˆ>]/) {

$sequence .= uc($_);
}

}

Graham Kemp, Chalmers University of Technology

Suffix tree

na

na$$$

$ na$

$

a

a

b n

$ n

$ n

a

a

$

$

$ n

a

n

a

n

a

banana$

Suffix treeSuffix trieAll suffixes

a
a

[0]

[1]

[2]

[3]

[4]

[5] [5]

[0]

[4] [2]

[3] [1]

anana$
nana$

ana$
na$

a$

banana$ [0]
[1]
[2]
[3]
[4]
[5]

$ [6]

[6] [6]

$ $

Graham Kemp, Chalmers University of Technology

Suffix array

Sor t the suffixes:
6 : $
5 : a $
3 : a na$
1 : a nana$
0 : b anana$
4 : n a$
2 : n ana$

Suffix array is (6, 5, 3, 1, 0, 4, 2)

Requires less space than a suffix tree.

Can use binary search to look for a substring (first and/or last
occurrence).

Graham Kemp, Chalmers University of Technology

Burr ows-Wheeler transform (BWT)

All rotations of the initial string (’banana$’):
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b
banana$

Sor ted, the Burrows-Wheeler Matrix (BWM):
$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

The last column gives the Burrows-Wheeler transfor m: annb$aa

Graham Kemp, Chalmers University of Technology

Reversing BWT with LF mapping

First and last columns from BWM.

Character in column L is immediately before character in column F.

Star t with first row, which has $ in column F.

F L The character before is
$ a0
a0 n0
a1 n1
a2 b0
b0 $
n0 a1
n1 a2

Graham Kemp, Chalmers University of Technology

‘‘How Perl Saved the Human Genome Project’ ’ (Lincoln Stein)

http://www.bioper l.org/wiki/How_Per l_saved_human_genome

Perl has been the solution of choice for genome centers whenever they
need to exchange data, or to retrofit one center’s software module to wor k
with another center’s system.

So Per l has become the software mainstay for computation within
genome centers as well as the glue that binds them together. Although
genome infor matics groups are constantly tinker ing with other "high level"
languages such as Python, Tcl and recently Java, nothing comes close to
Perl’s popular ity. How has Per l achieved this remarkable position?

Graham Kemp, Chalmers University of Technology

‘‘How Perl Saved the Human Genome Project’ ’ (Lincoln Stein)

1. Per l is remarkably good for slicing, dicing, twisting, wringing,
smoothing, summarizing and otherwise mangling text. Although the
biological sciences do involve a good deal of numer ic analysis now,
most of the primar y data is still text: clone names, annotations,
comments, bibliographic references. Even DNA sequences are
textlike. Interconverting incompatible data for mats is a matter of text
mangling combined with some creative guesswork. Per l’s pow erful
regular expression matching and string manipulation operators
simplify this job in a way that isn’t equalled by any other modern
language.

Graham Kemp, Chalmers University of Technology

‘‘How Perl Saved the Human Genome Project’ ’ (Lincoln Stein)

2. Per l is forgiving. Biological data is often incomplete, fields can be
missing, or a field that is expected to be present once occurs several
times (because, for example, an exper iment was run in duplicate), or
the data was entered by hand and doesn’t quite fit the expected
format. Per l doesn’t particular ly mind if a value is empty or contains
odd characters. Regular expressions can be written to pick up and
correct a var iety of common errors in data entry. Of course this
flexibility can be also be a curse.

3. Per l is component-oriented. Per l encourages people to write their
software in small modules, either using Per l librar y modules or with
the classic Unix tool-oriented approach. Exter nal programs can easily
be incorporated into a Per l scr ipt using a pipe, system call or socket.
The dynamic loader introduced with Per l5 allows people to extend the
Perl language with C routines or to make entire compiled librar ies
available for the Per l inter preter.

Graham Kemp, Chalmers University of Technology

‘‘How Perl Saved the Human Genome Project’ ’ (Lincoln Stein)

4. Per l is easy to write and fast to develop in. The interpreter doesn’t
require you to declare all your function prototypes and data types in
advance, new var iables spring into existence as needed, calls to
undefined functions only cause an error when the function is needed.
The debugger wor ks well with Emacs and allows a comfor table
interactive style of development.

5. Per l is a good prototyping language. Because Per l is quick and dirty,
it often makes sense to prototype new algor ithms in Per l before
moving them to a fast compiled language. Sometimes it turns out that
Perl is fast enough so that of the algorithm doesn’t have to be por ted;
more frequently one can write a small core of the algorithm in C,
compile it as a dynamically loaded module or exter nal executable, and
leave the rest of the application in Per l.

Graham Kemp, Chalmers University of Technology

‘‘How Perl Saved the Human Genome Project’ ’ (Lincoln Stein)

6. Per l is a good language for Web CGI scripting, and is growing in
impor tance as more labs turn to the Web for publishing their data.

My exper ience in using Per l in a genome center environment has been
extremely favorable overall. However I find that Per l has its problems too.
Its relaxed programming style leads to many errors that more uptight
languages would catch. For example, Per l lets you use a var iable before
its been assigned to, a useful feature when that’s what you intend but a
disaster when you’ve simply mistyped a var iable name. Similar ly, it’s easy
to forget to declare make a var iable used in a subroutine local,
inadver tently modifying a global var iable.

Graham Kemp, Chalmers University of Technology

