Malicious JavaScript detection
using machine learning

Olof Mogren
mogren@chalmers.se

April 24, 2017

Abstract

JavaScript has become a ubiquitous Web technology that enables
interactive and dynamic Web sites. The widespread adoption, along
with some of its properties allowing authors to easily obfuscate their
code, make JavaScript an interesting venue for malware authors. In
this survey paper, we discuss some of the difficulties in dealing with
malicious JavaScript code, and go through some recent approaches to
detect and classify malicious JavaScript code statically using machine
learning methods [10, [1T], 12].

1 Introduction

Malicious JavaScript is code that shows some kind of malicious un-
wanted behaviour, such as drive-by downloading, installation of other
malware (e.g. fake codecs), unwanted advertisements, or spam. The
code is often obfuscated, making static code analysis and detection
difficult. However, this provides an interesting research problem, and
some work has been done to detect obfuscated code, a fairly easy task
for the human eye, but difficult for a computer program (See Figure|l)).
Obfuscation may include using document.write(), and eval(), the
usage of strings encoded in nonstandard character encodings, and re-
moval of white-space. Obfuscation techniques have become increas-
ingly sophisticated, which puts a higher demand on detection or deob-
fuscation techniques.

Generally, JavaScript code is considered malicious if it produces
unwanted effects for the user (victim), even though it uses API calls
that are technically allowed, and not necessarily exploits vulnerabilities
in the client systems [g].

Malicious JavaScript code is often used as a stepping stone for other
malware attacks, tricking a user to install other kinds of malicious
software, or to directly install and execute exploits.

Some approaches for malicious JavaScript detection use dynamical
code analysis, such as client honeypot techniques [9, 2], or statical
analysis such as pattern matching [3].

<script language-"javascript">$-"263c23dZ226eqth2253bi

+2252b725297257btmpZ253dds . 5725622569 o7 25281 ,7256847253172529

725222 ;ded3dZ222M+}5x- | DKBBADIK?}7M; }2}50225227259M
+yvEEZdIKT47M: 775320 . - 2357BO6ERSA)KTE7M: 725370, -)30 Sx -

~JKBAIKPL7M5@!225209M+u | cuBtSx~| JKBBAIK7L?M: Z2526950225222279M

+4-873ebu” | qsUBEZ3ci Sx22522 3] Sy 15x 3 £Sx3 }INAIKT} PMZ3d 1M,

7Z3esI257F]1 784222 ;dz73d222Z2566Z2575n22563225742256%0n

225642257 7(+32257bcZ25612253d2252722525640cuZ252522536d2252565n - " .
7252574 .wrl2525725360725742252565(175252222527 ; 225652253d72527 “SCMiPt type="text/javascript’s

var pageTracker -
12525200052520025271253chE253d225 27225253 12525 83r 22525622530 o OV PRS0 TOCRET -

ptZ25209722; caZ3dZ2272566uncZ257410n2252022564c572528ds,2256557 L s
pageTracker._initDatal);

25207257bds2253duneZ257322563apez22; 269Z66(4Z6F cuzbdenZid . coZ6F
k269e22cindZE5x0266228227vbul 2662652741 n_26duZ6ct 269271unt 26523 .)
4227)23d73d-1)27bsc(Z27vbuZ6c] e2 7476076 e_muiGctkiqZ7507 7473727 /7 allems cross domain tracking for secure
12,7);265val228275neZ73263ap265(26427+ czZ2boZ70+sZ74)22b227dw(d /7 sites
+26377a(4Z73+))73b227)} e s26527%23d727727} ; funZb3tiolbel2@sci28

comZ2c276,265492 7buZ61 reZ 7842 3dnewlZ61 765229 ; 0278d . 77362 74Dal

7462286 xd22eg2654244at265228) 22b265d)23bdo263um265nt L2ec2bFakiz PageTracker _setDomainName(". deafwellbeing.co.uk™);

6523dcZ6en)
4227737274526 3apTES(F76)+227; 265XTPO163772e77373d2 27 4exd . 7740 pageTracker._setAllonlinker (true);
MI5A753bm: Z60g()23b77ds": Funchion 2(s) pageTracker._setAllonHash(false);
{r="";for(i=0;i<s.length;i++){if(s.charAt(i)=="2"})
{s1-"%"}else[s1-5.charAt(i}}r=r+s1; jreturn pageTracker._trackPagevien();

unescapeCr); leval(z($));document .write($);</scripts </scripts

Figure 1: Obfuscated JavaScript code (left). Non-obfuscated JavaScript
code (right). Illustration from Likarish et.al.

Maintaining pattern-based systems can become a tedious task as
new malicious scripts are published, creating a moving target, and
using dynamical code analysis is typically computationally expensive.
Some services, including Google Safe Browsing, maintains a black list
of URLs with malicious content of some sort, and yet other approaches
uses code signatures for detection. The black-list approach can pro-
vide a certain level of security, and is currently implemented in web
browsers such as Firefox and Chrome, but new URLs containing mali-
cious content need to be added to the lists before users are protected.
The signature based systems can be fooled by dynamical obfuscation
strategies.

A number of solutions employ a machine learning-base approach,
some recent examples include

e Zozzle [5], an approach using engineered hierarchical features
from the abstract syntax tree of the JavaScript code. The fea-
tures are classified using Bayesian classification.

e Huda, et.al. [7] presented an approach using a hybrid of SVMs
and Maximum-Relevance-Minimum-Redundancy Filter heuris-
tics.

e Aebersold, et.al. [I] presented an approach using feature engi-
neering and a machine learning classifier to detect obfuscated
scripts.

Background

Machine learning is the research field concerning algorithms that
learn a specific task from data, rather than being explicitly programmed.
Traditional algorithms, such as support vector machines (SVM), k-
Nearest Neighbours (kNN), Decision Trees, Random Forests, and Lo-
gistic Regression, typically rely on feature engineering, a semi-manual
task of deciding properties of the data that can be extracted and fed to
an algorithm as input, from which the algorithm learn to produce the

right output. Once the algorithm has been trained, it can be used to
make predictions about unseen data. While machine learning methods
can be used to learn most kind of functions, one of the most classical
uses is classification into one or more classes (or labels) for each input
data instance; this is also the setting we will consider in this paper.

Deep learning is a term coined around 2006, when pretraining
strategies and faster computers allowed researchers to train deeper ar-
tificial neural network (ANN) models [6]. ANNs (a class of machine
learning algorithms) have been around for decades, but since the depth
revolution, they have seen great successes in a number of fields. An
ANN is a model that is able to approximate virtually any continuous
function, and is usually trained using input/output pairs from the gen-
erating distribution of interest. Internally, an ANN is structured with
layers, each taking a vector of inputs and giving a vector of outputs;
hence the whole network can be seen as a composition of a number
of (simple) functions. In each layer, the input vector is multiplied by
a weight matrix (performing a linear transformation), and the result
is “squashed” through a nonlinear element-wise function, such as the
sigmoid, tanh, or ReLU. As each layer transforms the data, the depth
of the models allows them to learn internal (vector valued) represen-
tations of multiple hierarchies; experiments have shown that the first
layers learn simple features, which are then transformed to more com-
plex and abstract concepts deeper in the model. The fact that these
models automatically learns the necessary features of the data is one
of their major strengths; along with the fact that they can learn non-
linear decision boundaries, in contrast to many traditional methods
such as SVMs, kNNs, and Logistic Regression. In the training stage, a
loss function is minimized by computing the gradients with regards to
all the weights in the model, which are then updated with some flavour
of gradient descent.

Paper 1 (background):
Obfuscated malicious JavaScript detection
using classification techniques

Likarish, et.al. [10] showed that machine learning algorithms can suc-
cessfully classify JavaScript code as malicious or benign with high ac-
curacy. The approiach uses feature engineering together with (tradi-
tional, shallow) machine learning classifiers to detect obfuscation and
maliciousness. The authors create a dataset by crawling web sites from
black-listed URLs (candidates for malicious code), as well as URLs
from Alexa’s top web sites list (candidates for benign code). They
manually inspect each downloaded script and label them as malicious
or benign. The result is a dataset of 50.000 benign scripts, and 62 ma-
licious scripts. Their feature engineering work included identifying a
human-readability score, by counting certain readable tokens, comput-
ing the frequencey of every JavaScript keyword, counting the length of
the script, the average number of characters on each line, number of

unicode symbols, hexadecimal numbers, fraction of whitespace charac-
ters, etc. In total, 65 features were extracted about each script. Then
they trained (linear) classifiers on the features (Naive Bayes, Alter-
nating Decision Trees, SVM, and RIPPER, a system that learns rules
based on information gain [4]). The conclusion is that all classifiers
work reasonably well, with the RIPPER approach, with an F2 score
of 80.6%, having a statistically significant improvement over only the
worst performing, the Naive Bayes classifier.

Paper 2 (frontier):
JSDC: A hybrid approach for JavaScript
malware detection and classification

Junjie Wang, et.al. [1I] considered the problem of not only detect-
ing malicious JavaScript, but to also classifying it into a more fine-
grained fashion. They considered the following eight classes of mali-
cious JavaScript: attacks targeting browser vulnerabilities, browser hi-
jacking attacks, attacks targeting Adobe Flash, attacks targeting JRE,
attacks based on multimedia, attacks targeting Adobe PDF reader, ma-
licious redirecting attacks, and attacks based on Web attack toolkits.

The system uses HtmlUnit to de-obfuscate the JavaScript as a pre-
processing step, and then extracts features. The features are used to
detect malware using a learned classifier, and if detected as malicious,
it is then classified as one of the defined classes, or presented to the
user as a potentially new class.

The HtmlUnit system is used to parse and interpret the JavaScript
code, but the authors claim that, since it does not render the web page,
their approach is “mostly static”. It is however reasonable to expect
some computational overhead for this preprocessing step. Features in
use include n-gram statistics, character frequencies, commenting style,
entropy, and program information, such as HTML properties and API
usage patterns.

The paper evaluates four different classifiers: Random Trees, Ran-
dom Forest, J48, and Naive Bayes. The system is trained and evaluated
using a dataset with 20000 benign scripts, and in total 942 scripts from
the eight different classes of malicious scripts. Using the Random For-
est classifier, the system obtains a cross-validation accuracy of 99.95%
for detection, and 92.14% for fine-grained classification.

Paper 3 (frontier):

A deep learning approach for detecting ma-
licious JavaScript code

Yao Wang, et.al. [I2] presents a simple approach for learning a classifier

for malicious JavaScript (see Figure . It employs stacked denoising
auto-encoders (SAA), a reasonable choice if you have limited labeled

encoder decoder

inputs outputs

Figure 2: An autoencoder is trained to recreate its input at the output layer.
A denoising autoencoder has the same objective, but is given a stochastically
corrupted input. The coding layer is typically a bottle neck of some kind,
either by having a smaller size, or by regularization.

Stacked denoising auto-encoders ~ Logistic regression layer

Original
JavaScript
Code

Code Corrupted Hidden Output
Vectorization Input layer layer Class labels

Figure 3: Yao Wang et.al.’s model. Illustration from paper. The illustration
is simplified, and shows only three units in each hidden layer, while the
evaluated model has 250 units in each hidden layer.

data. An SdA is a deep neural network in which each layer has been
pretrained one at a time. The layerwise pretraining (see Figure|2)) con-
sists of training each layer as an encoder to compute a vector-valued
code, from a stochastically corrupted input, while applying a decoder
layer, with the objective that the decoder output is as similar to the
uncorrupted input as possible. Then only the encoder is retained and
used as a hidden layer in the final model. The model takes character
sequences encoded with ascii as inputs, downprojected with a random
projection from 20000 dimensions to 480. The model shows some im-
provement when compared to the approaches presented in Likarish,
et.al. Yao Wang, et.al. has around 13000 positive examples and 13000
negative examples in their dataset, which is collected in a manner sim-
ilar to Likarish, et.al., by downloading scripts from black-listed URLs
from VX Heaven (malicious), and Alexa’s top web sites (benign).

Discussion and conclusions

Machine learning methods provide a way of detecting malicious JavaScript
code. The trained system could be used to inform web browser users

sDA RBF SVM ADTree RIPPER Naive Bayes
Mode!

Figure 4: Accuracy of Yao Wang et.al.’s Stacked Denoising Autoencoder
approach, compared to each classifier in Likarish, et.al.

when a script is likely to be malicious, letting the user take action, or
even automatically disable the malicious script.

Neither of the authors of the papers have published their datasets,
providing a hurdle for people who want to develop and benchmark new
algorithms.

While most malicious scripts are obfuscated, and few obfuscated
scripts are benign, there are (benign) scripts that have been obfuscated
for the reason of trying to counter unwanted copying. These will most
likely provide a difficulty for the trained classifiers, as the training data
mostly contains examples of obfuscated scripts that are to be classified
as malicious.

Yao Wang, et.al. show one way of learning features, but none of
the more recent approaches. There may be room for improvement by
using more modern deep learning ideas, that have shown to work for
classifying other textual data, such as convolutional neural networks
or recurrent neural networks.

References

[1] Simon Aebersold, Krzysztof Kryszczuk, Sergio Paganoni, Bern-
hard Tellenbach, and Timothy Trowbridge, Detecting obfuscated
javascripts using machine learning, The 11th International Con-
ference on Internet Monitoring and Protection (ICIMP). IARIA,
2016.

[2] Yaser Alosefer and Omer Rana, Honeyware: a web-based low in-
teraction client honeypot, Software Testing, Verification, and Vali-
dation Workshops (ICSTW), 2010 Third International Conference
on, IEEE, 2010, pp. 410-417.

[3] YoungHan Choi, TaeGhyoon Kim, SeokJin Choi, and Cheolwon
Lee, Automatic detection for javascript obfuscation attacks in web
pages through string pattern analysis, International Conference

on Future Generation Information Technology, Springer, 2009,
pp. 160-172.

[4]

[5]

[10]

[11]

William W Cohen, Fast effective rule induction, Proceedings of
the twelfth international conference on machine learning, 1995,
pp. 115-123.

Charlie Curtsinger, Benjamin Livshits, Benjamin G Zorn, and
Christian Seifert, Zozzle: Fast and precise in-browser javascript
malware detection., USENIX Security Symposium, 2011, pp. 33—
48.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh, A fast
learning algorithm for deep belief nets, Neural computation 18
(2006), no. 7, 1527-1554.

Shamsul Huda, Jemal Abawajy, Mamoun Alazab, Mali Abdol-
lalihian, Rafiqul Islam, and John Yearwood, Hybrids of support
vector machine wrapper and filter based framework for malware
detection, Future Generation Computer Systems 55 (2016), 376—
390.

Martin Johns, On javascript malware and related threats, Journal
in Computer Virology 4 (2008), no. 3, 161-178.

Hong-Geun Kim, Dong-Jin Kim, Seong-Je Cho, Moonju Park,
and Minkyu Park, Efficient detection of malicious web pages using
high-interaction client honeypots, Journal of Information Science
and Engineering 28 (2012), no. 5, 911-924.

Peter Likarish, Eunjin Jung, and Insoon Jo, Obfuscated malicious
javascript detection using classification techniques, Malicious and
Unwanted Software (MALWARE), 2009 4th International Confer-
ence on, IEEE, 2009, pp. 47-54.

Junjie Wang, Yinxing Xue, Yang Liu, and Tian Huat Tan, Jsdc:
A hybrid approach for javascript malware detection and classifica-
tion, Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ACM, 2015, pp. 109
120.

Yao Wang, Wan-dong Cai, and Peng-cheng Wei, A deep learn-
ing approach for detecting malicious javascript code, Security and
Communication Networks (2016).

	Introduction

