
Exam
Data structures DAT036/DAT037/DIT960

Time Thursday 18th August 2016, 08:30–12:30

Place Maskinhuset / SB Multisal

Course responsible Nick Smallbone, tel. 0707 183062

The exam consists of six questions. For each question you can get a 3, 4 or 5. 
You may answer in English or Swedish.

To get a 3 on the exam, you need to get a 3 on 3 questions.
To get a 4 on the exam, you need to get a 4 on 4 questions.
To get a 5 on the exam, you need to get a 5 on 5 questions.

For GU students, a G corresponds to a 3, and a VG corresponds to a 5.

A fully correct answer for a question will get full marks. An answer with small 
mistakes may get a lower grade. An answer with large mistakes will get a U.

When a question asks for pseudocode, you can use a mixture of natural 
language and programming notation in your solution, and should give enough 
detail that a competent programmer could easily implement your solution.

Allowed aids One A4 piece of paper of notes, which should be handed in 
after the exam. You may use both sides.

You may also bring a dictionary.

Note Begin each question on a new page.

Write your anonymous code (not your name) on every page.

Good luck!



1. The following algorithm takes as input an array which may contain 
duplicates. It returns true if all elements of the array occur an odd 
number of times. Otherwise it returns false.

For example, on the array {1, 3, 2, 2, 5, 2} it returns true, but on 
the array {1, 3, 2, 2, 5, 2, 5} it returns false because 5 occurs an 
even number of times.

S = new AVL tree
for every element x in input array
  if S.member(x)
    S.delete(x)
  else
    S.insert(x)
// At this point, S contains those elements that
// occur an odd number of times

for every element x in input array
  if not S.member(x)
    return false
return true

What is the big-O complexity of this algorithm?

For a 3: express your answer in terms of n, the length of the input list.
For a 4: express your answer in terms of n and m, where n is the length of
the input list and m is the number of distinct elements in the input list.

Answer:

For a 3: O(n log n). There are O(n) tree operations and each takes O(log 
n) time.

For a 4: O(n log m). The AVL tree never contains more than m elements. 
So there are O(n) tree operations and each takes O(log m) time.



2. Have a look at the following three binary trees.

Tree A: 

Tree B: 

Tree C: 

a) One of these trees is an AVL tree. Which one?

b) Insert 30 into the tree using the AVL insertion algorithm. Write down 
the final tree.



Answer:

a) C is an AVL tree. (A is not a binary search tree as 25 > 15. B is not 
an AVL tree as the root’s left child has a height of 4 but the root’s right
child has a height of 2.

b) After inserting 30 using BST insertion, the tree is unbalanced (root's
left child height = 4, right child height = 2). It's a left-right tree so a 
double rotation fixes it:



3. Suppose we are implementing a class for dynamic arrays in Java:

class DynamicArray<A> {
  private int size;
  private A[] data;

  ... class methods go here ...
}

The class contains two fields, seen above: size is the number of elements 
in the dynamic array, and data is the contents of the dynamic array, 
stored in indices data[0], ..., data[size-1]. As usual with dynamic 
arrays, there may be unused space at the end of the array, in which case 
size < data.length.

You should answer the questions below with Java code, not pseudocode. 
You do not need to check for errors. For example, you can assume that 
the array is not empty and the index is a valid index in the array. You do 
not need to resize the array if it becomes too small.

a) Write a method void deleteLast() which removes the last element 
from the dynamic array. It should take O(1) time.

void deleteLast() {
size--;

}

b) Write a method void delete(int index) which removes the element 
at position index from the dynamic array, preserving the order of 
elements in the array. For example, calling delete(2) on a dynamic 
array containing {2,5,4,1,3} should result in {2,5,1,3}.

Your method should take O(n) time.

Only completely correct solutions will be accepted. You may want to 
test your code on the example above to make sure it works.



void delete(int index) {
    size--;
    for (int i = index; i < size; i++)
    data[i] = data[i+1];
}

The idea is to move all elements after index down by 1.

c) For a 4: If we do not need to preserve the order of elements in the 
array, we can implement deletion more efficiently. Write a method 
void deleteUnordered(int index) which removes the element at 
position index from the dynamic array. It is allowed to alter the order 
of elements in the array.

Your method should take O(1) time.

void deleteUnordered(int index) {
    data[index] = data[size-1];
    size--;
}

The idea is to overwrite the deleted element with the last element in 
the array.



4. Design a data structure for storing a set of integers. It should support the 
following operations:

◦ new(): create a new, empty set

◦ insert(x): add an integer x to the set

◦ member(x): test if a given integer x is in the set

◦ increaseBy(x): add x to all the integers in the set

For example, after calling increaseBy(2) on a set containing 1,2,3,4,5, 
the set afterwards should contain 3,4,5,6,7.

You may freely use standard data structures and algorithms from the 
course in your solution, without explaining how they are implemented.

You should say what design or existing data structure you have chosen, 
and write down the operations as pseudocode. You don’t need to write 
Java code, but be precise – a competent programmer should be able to 
take your description and easily implement it.

The operations must have the following time complexities. You must also
briefly justify why each operation has the right complexity. If you use a 
standard algorithm, you can assume its complexity without justification.

◦ For a 3:
O(1) for new,
O(log n) for insert/member,
O(n) for increaseBy
(where n is the number of elements in the set)

◦ For a 5:
as for G but the complexity of increaseBy must be O(1).



Answer:

We can use an AVL tree.

◦ new(): create a new AVL tree

◦ insert(x): use AVL insertion

◦ member(x): use BST membership testing

◦ increaseBy(x): use (e.g.) an inorder traversal to iterate through all 
nodes of the tree. For each node, add x to the value. Note that this 
preserves the relative order of all elements so will note break the AVL 
invariant.

For a 5:

We maintain both an AVL tree and an integer k which stores the total of 
all calls to increaseBy.

◦ new: create a new AVL tree, set k=0

◦ insert(n): insert n-k into AVL tree

◦ member(n): check if n-k is contained in AVL tree

◦ increaseBy(n): set k=k+n



5. Suppose we are given the following Haskell type of binary trees 
containing integers:

data Tree = Nil | Node Integer Tree Tree

Write a function isBST :: Tree  Bool→  which takes a binary tree and 
returns True if it is a binary search tree.

For a 3: your function should have O(n2) complexity, where n is the size 
of the tree. Hint: you will probably need to define some helper functions.

For a 5: your function should have O(n) complexity. Hint: try defining a 
function which returns whether the tree is a BST together with some 
other information.

Answer:

Here is one solution, which defines a helper function values :: Tree  →
[Integer] returning all values in a tree.

isBST Nil = True
isBST (Node x l r) = all (<= x) (values l) && all (>= x) 
(values r)

values Nil = []
values (Node x l r) = values l ++ [x] ++ values r

For a 5:

We define a helper function

isBST’ :: Maybe Integer  Maybe Integer  Tree  Bool→ → →

which takes a tree and a lower and upper bound, and checks that the tree
is a BST and all of its values are within the bounds.

isBST’ _ _ Nil = Nil
isBST’ min max (Node x l r) =



  checkMin min x && checkMax max x &&
  isBST’ min (Just x) l && isBST’ (Just x) max r
  where
    checkMin Nothing _ = True
    checkMin (Just min) x = min <= x
    checkMax Nothing _ = True
    checkMax (Just max) x = x <= max

Using this funciton we can define isBST:

isBST t = isBST’ Nothing Nothing t



6. A double-ended priority queue is a priority queue that supports removing
both the minimum and the maximum element. It provides the following 
operations:

◦ insert – add an element to the priority queue

◦ findMin/deleteMin – find or delete the minimum element

◦ findMax/deleteMax – find or delete the maximum element

While writing a program, you discover you need a double-ended priority 
queue. Your friend suggests a way to implement one:

Maintain two priority queues, one of them a min heap and the 
other a max heap1. To insert an item, insert it into both heaps.
To implement findMin/deleteMin simply call findMin/deleteMin 
on the min heap. To implement findMax/deleteMax call 
findMax/deleteMax on the max heap.

The following Java code illustrates the idea:

MinHeap minheap = new MinHeap();
MaxHeap maxheap = new MaxHeap();
void insert(E x) { minheap.insert(x); maxheap.insert(x); }
E findMin() { return minheap.findMin(); }
E findMax() { return maxheap.findMax(); }
void deleteMin() { minheap.deleteMin(); }
void deleteMax() { maxheap.deleteMax(); }

Unfortunately, this idea does not work. Once you see why, write down a 
sequence of operations where this design would give the wrong answer.

Answer:

The problem is that in deleteMin, you need to remove the minimum 
element from both minheap and maxheap (likewise for deleteMax). The 
following example goes wrong:

insert(1); // minheap contains 1, maxheap contains 1
deleteMax(); // minheap contains 1, maxheap is empty
insert(2); // minheap contains 1 and 2, maxheap contains 2
findMin(); // returns 1, which should not be in the priority queue!

1 Recall that a max heap supports the operations insert, findMax and deleteMax.
A min heap is an ordinary binary heap and supports insert, findMin and deleteMin.



For a 4:

A min-max heap is a binary tree with the following invariant:

◦ The value of any node at an even level in the tree is less than or equal 
to all values in the node's subtree;

◦ the value of any node at an odd level in the tree is greater than or 
equal to all values in the node's subtree.

The level of a node is defined as follows: the root of the tree is at level 0, 
its children are at level 1, its grandchildren are at level 2, and so on.

Describe how to find the minimum and maximum elements in a min-max
heap. Make sure you consider the case where the heap has one element. 
You do not have to worry about insertion or deletion, only 
findMin/findMax.

Answer:

Drawing a few min-max heaps you will see that the least element must be
the root (like in a min heap), and the greatest element must be one of the 
root’s children. There is one exception: if the heap only contains one 
element, then the root is both the least and the greatest element.

So to find the minimum element: just return the root’s value.

To find the maximum element, look at the root, the root’s left child and 
the root’s right child, and return whichever of the three is biggest.

(More information: http://en.wikipedia.org/wiki/Min-max_heap)

http://en.wikipedia.org/wiki/Min-max_heap
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