
Skew heaps



  

Heaps with merging

Apart from adding and removing minimum
element, another useful operation is merging two
heaps into one.
To do this, let's go back to binary trees with the heap
property (no completeness):

We can implement the other priority queue
operations in terms of merging!
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Insertion

To insert a single element:
● build a heap containing just that one element
● merge it into the existing heap!

E.g., inserting 12
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Delete minimum

To delete the minimum element:
● take the left and right branches of the tree
● these contain every element except the smallest
● merge them!

E.g., deleting 8 from the previous heap
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Heaps with merging

Using merge, we can efficiently implement:
● insertion
● delete minimum

Only question is, how to implement merge?
● Should take O(log n) time

We'll start with a bad merge algorithm, and
then fix it



  

Naive merging

How to merge these two heaps?

Idea: root of resulting heap must be 18
Take heap A, it has the smallest root.
Pick one of its children. Recursively merge B
into that child.
Which child should we pick? Let's pick the
right child for no particular reason
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Naive merging

To merge two non-empty heaps:
Pick the heap with the smallest root:

Let C be the other heap
Recursively merge B and C!
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Example

18 < 29 so pick 18 as the root of the merged
tree
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Naive merging

Recursively merge the right branch of 18 and
the 29 tree
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Naive merging

28 < 29 so pick 28 as the root of the merged
tree
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Naive merging

Recursively merge the right branch of 28 and
the 29 tree
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Naive merging

29 < 32 so pick 29 as the root of the merged
tree
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Naive merging

Recursively merge the right branch of 29
with 32
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Naive merging

Base case: merge 66 with the empty tree

Notice that the tree looks pretty “right-
heavy”
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Worst case for naive merging

A right-heavy tree:

Unfortunately, you get this just by doing
insertions! So insert takes O(n) time...
How can we stop the tree from becoming right-
heavy?



  

Skew merging

In a skew heap, after making a recursive call
to merge, we swap the two children:

Amazingly, this small change completely fixes
the performance of merge!
We almost never end up with right-heavy
trees.
We get O(log n) amortised complexity.
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Example

One way to do skew merge is to first do naive
merge, then go up the tree swapping left and
right children...
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Example

...like this:
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Example

...like this:
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Skew heaps

Implementation of priority queues:
● binary trees with heap property
● skew merging avoids right-heavy trees,

gives O(log n) amortised complexity
● other operations are based on merge

A good fit for functional languages:
● based on trees rather than arrays, tiny implementation!

Other data structures based on naive merging +
avoiding right heavy trees:
● leftist heaps (swap children when needed)
● meldable heaps (swap children at random)

See webpage for link to visualisation site!



  

Skew heap merge operation has
amortized logarithmic complexity (Not

on exam)
● Amortized complexity: If any sequence of k 

operations has complexity O(f) (where f 
depends on k and parameters representing
the size of data), then the amortized 
complexity of the operation is O(f/k)

● Example: for dynamic arrays, inserting at the
end has best case complexity O(1) and worst
case complexity O(n). However, k insertions
has complexity O(k), so the amortized
complexity is O(1)



  

Skew heap merge operation has
amortized logarithmic complexity

● The potential method is one way to calculate amortized complexity.
● You define a potential function, F, that maps states of the data to a

number.
● The potential can be seen as a bank account where you save money in

good times (when execution is quick) and withdraw money in bad times
(when execution is slow).

● Provided that the potential always is non-negative and the running time
plus change in potential is O(f(n)), the amortized complexity is O(f(n))

● Example: Dynamic arrays. LetF be 0 for the empty list and increase by 2
for each addition of an element. When array grows, deduce 1 for each
copy to new array. Let the running time, T, be the number of writes to
the array. Then T is 1 each time the array does not grow. When the array
grows T is n and F will decrease by n – 3. F will never be negative.
(Check this.) T + DF = 1 + 2 = 3 when array doesn’t grow and n – (n – 3)
= 3 when array does grow. So, amortized complexity is O(1)



  

Skew heap merge operation has
amortized logarithmic complexity

● Let’s use the potential method to show that the skew
heap merge operation has logarithmic amortized
complexity.

● Let a node be called right heavy if the size of the right
subtree is greater than the size of the left subtree.

● Define the potential, F, to be the number of right heavy
nodes in the heap.

● By definition F is non-negative. So what we need to show
is that T + DF is O(log n) where n is the size of the heap.

● Note that the right spine (the rightmost path) of any
binary tree contains at most log2 n nodes which are not 
right heavy.



  

Skew heap merge operation has
amortized logarithmic complexity

● The merge operation interleaves the right spines of the
two heaps and makes the left subtrees right subtrees
instead.

● Let’s assume that the heaps have size n1 and n2 and that
their right spines contain h1 and h2 right heavy nodes,
respectively.

● Let’s assume that the right spines of the heaps contain k1 
and k2 nodes in total.

● We know that k1 ≤ h1 + log2 n1 and k2 ≤ h2 + log2 n2.
● Let T be k1 + k2 (for each node in the two spines the

execution takes constant time)
● T ≤ h1 + h2 + log2 n1 + log2 n2



  

Skew heap merge operation has
amortized logarithmic complexity

● So what’s the change in potential?
● Right spine nodes in the original heaps which were right heavy

no longer are in the resulting heap. This is because the children
are swapped and the left child will contain at least as many
nodes as before (in the right child), while the right child will
contain the same amount (as the left child did before).

● This transformation of right heavy nodes to non-right heavy
nodes means a decrease of the potential by h1 + h2

● The non-right heavy nodes of the left spines might have become
right heavy in the new heap.

● This transformation of some of the non-right heavy nodes to
right heavy nodes means an increase of the potential by at most
the total number of non-right heavy nodes in the two right
spines, which is at most log2 n1 + log2 n2.



  

Skew heap merge operation has
amortized logarithmic complexity

● To sum up DF <= -h1 - h2 + log2 n1 + log2 n2 
and we already concluded that T ≤ h1 + h2 +
log2 n1 + log2 n2

● So T + DF ≤  2 log2 n1 + 2 log2 n2 ∈ O(log n)
● For a similar, more detailed explanation, see

http://www.cse.yorku.ca/~andy/courses/4101/lecture-notes/LN5.pdf

http://www.cse.yorku.ca/~andy/courses/4101/lecture-notes/LN5.pdf
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