
Quicksort

Mergesort again

1. Split the list into two equal parts

485 3 9 2 7 3 2 1

85 3 9 2 47 3 2 1

Mergesort again

2. Recursively mergesort the two parts

85 3 9 2 47 3 2 1

853 92 4 7321

Mergesort again

3. Merge the two sorted lists together

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4

Quicksort

Mergesort is great... except that it's not in-
place
● So it needs to allocate memory
● And it has a high constant factor

Quicksort: let's do divide-and-conquer
sorting, but do it in-place

Quicksort

Pick an element from the array, called the
pivot
Partition the array:
● First come all the elements smaller than the pivot,

then the pivot, then all the elements greater than
the pivot

● Partitioning has complexity O(n)

Recursively quicksort the two partitions

Quicksort

5 3 9 2 8 7 3 2 1 4

Say the pivot is 5.

Partition the array into: all elements less than 5, then 5,
then all elements greater than 5

3 3 2 2 1 4 5 9 8 7

Less than the pivot Greater than the pivot

Quicksort

Now recursively quicksort the two partitions!

3 3 2 2 1 4 5 9 8 7

1 2 2 3 3 4 5 7 8 9

Quicksort Quicksort

Pseudocode

// call as sort(a, 0, a.length-1);
void sort(int[] a, int low, int high) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 // assume that partition returns the
 // index where the pivot now is
 sort(a, low, pivot-1);
 sort(a, pivot+1, high);
}

Common optimisation: switch to insertion sort
when the input array is small

Quicksort's performance

Mergesort is fast because it splits the array
into two equal halves
Quicksort just gives you two halves of
whatever size!
So does it still work fast?

Complexity of quicksort

In the best case, partitioning splits an array
of size n into two halves of size n/2:

n

n/2 n/2

Complexity of quicksort

The recursive calls will split these arrays into four arrays
of size n/4:

n

n/2 n/2

n/4 n/4 n/4 n/4

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n
“levels”

O(n) time per level

Total time is
O(n log n)!

Complexity of quicksort

But that's the best case!
In the worst case, everything is greater than
the pivot (say)
● The recursive call has size n-1
● Which in turn recurses with size n-2, etc.
● Amount of time spent in partitioning:

n + (n-1) + (n-2) + … + 1 = O(n2)

n

n-1

n-2

n-3

n
“levels”

O(n) time per level

Total time is
O(n2)!

Worst cases

When we simply use the first element as the
pivot, we get this worst case for:
● Sorted arrays
● Reverse-sorted arrays

The best pivot to use is the median value of
the array, but in practice it's too expensive to
compute...
Most important decision in QuickSort:
what to use as the pivot

Complexity of quicksort

You don't need to split the array into exactly
equal parts, it's enough to have some balance
● e.g. 10%/90% split still gives O(n log n) runtime

48

Partitioning algorithm

1. Pick a pivot (here 5)

5 3 9 2 7 3 2 1

48

Partitioning algorithm

2. Set two indexes, low and high

Idea: everything to the left of low is less than
the pivot (coloured yellow), everything to the
right of high is greater than the pivot
(green)

5 3 9 2 7 3 2 1

low high

48

Partitioning algorithm

3. Move low right until you find something greater or
equal to the pivot

5 3 9 2 7 3 2 1

low high

48

Partitioning algorithm

3. Move low right until you find something greater or
equal to the pivot

while (a[low] < pivot) low++;

5 3 9 2 7 3 2 1

highlow

48

Partitioning algorithm

3. Move low right until you find something
greater than the pivot

while (a[low] < pivot) low++;

5 3 9 2 7 3 2 1

low high

Partitioning algorithm

3. Move high left until you find something
less than the pivot

while (a[high] < pivot) high--;

485 3 9 2 7 3 2 1

low high

Partitioning algorithm

4. Swap them!

swap(a[low], a[high]);

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

low++; high--;

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

while (a[low] < pivot) low++;

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

while (a[high] < pivot) high++;

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

swap(a[low], a[high]);

915 3 4 2 7 3 2 8

low high

Partitioning algorithm

5. Advance low and high and repeat

low++; high--;

915 3 4 2 7 3 2 8

low high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 7 3 2 8

low high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 7 3 2 8

low high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 2 3 7 8

low high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 2 3 7 8

low

high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 2 3 7 8

low

high

Partitioning algorithm

6. When low and high have crossed, we are finished!

But the pivot is in the wrong place.

915 3 4 2 2 3 7 8

low

high

Partitioning algorithm

7. Last step: swap pivot with high

913 3 4 2 2 5 7 8

low

high

Details

1. What to do if we want to use a different
element (not the first) for the pivot?
● Swap the pivot with the first element before starting

partitioning!

Details

2. What happens if the array contains many
duplicates?
● Notice that we only advance a[low] as long as a[low]

< pivot
● If a[low] == pivot we stop, same for a[high]
● If the array contains just one element over and over

again, low and high will advance at the same rate
● Hence we get equal-sized partitions

Pivot

Which pivot should we pick?
● First element: gives O(n2) behaviour for already-

sorted lists
● Median-of-three: pick first, middle and last element

of the array and pick the median of those three
● Pick pivot at random: gives O(n log n) expected

(probabilistic) complexity

Quicksort

Typically the fastest sorting algorithm...
...but very sensitive to details!
● Must choose a good pivot to avoid O(n2) case
● Must take care with duplicates
● Switch to insertion sort for small arrays to get better

constant factors

If you do all that right, you get an in-place
sorting algorithm, with low constant factors
and O(n log n) complexity

Stable sorting

● When sorting complex objects, e.g. where
each element contains various information
about a person, the ordering may only take
part of the data in account (via Comparable,
Comparator, Ord)

● Then it’s sometimes important that objects
that are deemed equal by the ordering should
appear in the same order as they did in the
original list.

● A sorting algorithm that does not change the
order of equal elements is called stable.

Stable sorting

● Let’s say that we want to sort
 [(5, “a”), (3, “d”), (2, “f”), (3, “b”)]
and that the ordering of the pairs is defined to be
the natural ordering of the first component.
Unstable sorting might result in
 [(2, “f”), (3, “b”), (3, “d”), (5, “a”)]
Stable sorting always gives
 [(2, “f”), (3, “d”), (3, “b”), (5, “a”)]

● Insertion sort is stable (provided that the insert
inequality check is the right one, so that equal
elements are not swapped).

Merge sort vs quicksort

Quicksort:
● In-place
● O(n log n) but O(n2) if you are not careful
● Works on arrays only (random access)
● Not stable

Compared to mergesort:
● Not in-place
● O(n log n)
● Only requires sequential access to the list – this makes it

good in functional programming
● Stable

Sorting

Why is sorting important? Because sorted data is
much easier to deal with!
● Searching – use binary instead of linear search
● Finding duplicates – takes linear instead of quadratic time
● etc.

Most sorting algorithms are based on comparisons
● Compare elements – is one bigger than the other? If not, do

something about it!
● Advantage: they can work on all sorts of data
● Disadvantage: specialised algorithms for e.g. sorting lists of

integers can be faster

Real-world sorting

Sorting algorithms so far

Worst case Average case Best case

Insertion
sort

O(n2) O(n2) O(n)

Quicksort O(n2) O(n log n) O(n log n)

Mergesort O(n log n) O(n log n) O(n log n)

Sorting algorithms so far

Worst case Average case Best case

Insertion
sort

O(n2) O(n2) O(n)

Quicksort O(n2) O(n log n) O(n log n)

Mergesort O(n log n) O(n log n) O(n log n)

No clear winner...
the best algorithms

combine ideas
from several

Introsort

Quicksort: fast in practice, but O(n2) worst
case
Introsort:
● Start with Quicksort
● If the recursion depth gets too big, switch to

heapsort, which is O(n log n)

Plus standard Quicksort optimisations:
● Choose pivot via median-of-three
● Switch to insertion sort for small arrays

Used by e.g. C++ STL, .NET, ...

Dual-pivot quicksort

Instead of one pivot, pick two, x and y
Instead of partitioning the array into two halves,
partition it into three thirds

Look up the Dutch national flag problem if you want to
know how
Recursively sort the three partitions!
● If the two pivots are equal, don't sort the middle partition

(neatly handles the case where the array has a lot of duplicates)

Used by Java for primitive types (int, ...)

< x ≥ x and ≤ y > yx y

Traditional merge sort
(a recap)

541 3 6 8 2 1 3 7

541 3 6 8 2 1 3 7

541 3 6 8 2 1 3 7

54

1 3

6 8

2 1

3 71 3 2 1

split split

splitsplitsplitsplit

831 1 2 3 4 5 6 7

781 3 4 6 1 2 3 5

781 3 6 4 1 2 3 5

54

1 3

6 8

1 2

3 71 3 2 1

merg
e

merg
e

merg
e

merg
e

merg
e

merg
e

Natural merge sort

Traditional merge sort splits the input list
into single elements before merging
everything back together again
Better idea: split the input into runs
● A run is a sequence of increasing elements
● ...or a sequence of decreasing elements
● First reverse all the decreasing runs, so they become

increasing
● Then merge all the runs together

541 3 6 8 2 1 3 7

split

541 3 6 8 2 1 3 7
split split split

1 2 4
rever
se

merg
e 741 1 2 3 6 8 3 5

merg
e

merg
e

merg
e

831 1 2 3 4 5 6 7

merg
e

merg
e

Natural merge sort

Big advantage: O(n) time for sorted data
● ...and reverse-sorted data
● ...and “almost”-sorted data

Complexity: O(n log r), where r is the
number of runs in the input
● ...worst case, each run has two elements, so r = n/2, so

O(n log n)

Used by GHC

541 3 6 8 2 1 3 7
split

541 3 6 8 2 1 3 7
split split split

1 2 4
reverse

merg
e 741 1 2 3 6 8 3 5

merg
e

merg
e

merg
e

831 1 2 3 4 5 6 7
merg
e

merg
e

O(n) time per
level

O (log
r)
“levels”

Total time is
O(n log r)!

Timsort

Natural mergesort is really good on
sorted/nearly-sorted data
● You get long runs so not many merges to do

But not so good on highly unsorted data
● Short runs so many merges

Idea of Timsort: on short, very unsorted
parts of the list, switch to insertion sort
How to detect unsortedness?
● Several short runs next to one another

541 3 6 8 2 1 3 7

split

541 3 6 8 2 1 3 7
split split

1 2 4
revers
e

merg
e 741 1 2 3 6 8 3 5

merg
e

insertion
sort

831 1 2 3 4 5 6 7

merg
e

merg
e

Don't split 3 7 5
into two runs,
it's too short!

Timsort

Specifically:
● If we come across a short run, join it together with all

following short runs until we reach a threshold
● Then use insertion sort on that part

Also some optimisations for merge:
● Merge smaller runs together first
● If the merge begins with several elements from the

same array, use binary search to find out how many
and then copy them all in one go

Used in Java for arrays of objects, Python
http://en.wikipedia.org/wiki/Timsort

http://en.wikipedia.org/wiki/Timsort

The best sorting algorithm?

A good sorting algorithm should:
● have O(n log n) complexity
● have O(n) complexity on nearly-sorted data
● be simple
● be in-place
● be cache-friendly

No algorithm seems to have all of these!

Summary

No one-size fits all answer
● Best overall complexity: natural mergesort
● But quicksort has smaller constant factors
● Timsort a good compromise?

Different algorithms are good in different
situations
● ...something you should find in the lab :)

Best sorting functions combine ideas from several
algorithms
● Introsort: quicksort+heapsort+insertion sort
● Timsort: natural mergesort+insertion sort

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

