

Binary search

Searching

Suppose I give you an array, and ask you to find if a
particular value is in it, say 4.

5 3 9 2 8 7 3 2 1 4

The only way is to look at each element in turn.

This is called linear search.

You might have to look at every element before you find
the right one.

Searching

But what if the array is sorted?

1 2 2 3 3 4 5 7 8 9

Then we can use binary search.

Binary search

Suppose we want to look for 4.

We start by looking at the element half way along the
array, which happens to be 3.

1 2 2 3 3 4 5 7 8 9

Binary search

3 is less than 4.

Since the array is sorted, we know that 4 must come
after 3.

We can ignore everything before 3.

1 2 2 3 3 4 5 7 8 9

Binary search

Now we repeat the process.

We look at the element half way along what's left of the
array. This happens to be 7.

1 2 2 3 3 4 5 7 8 9

Binary search

7 is greater than 4.

Since the array is sorted, we know that 4 must come
before 7.

We can ignore everything after 7.

1 2 2 3 3 4 5 7 8 9

Binary search

We repeat the process.

We look half way along the array again.

We find 4!

1 2 2 3 3 4 5 7 8 9

Performance of binary search

Binary search repeatedly chops the array in
half
● If we double the size of the array, we need to look at

one more array element
● With an array of size 2n, after n tries, we are down to

1 element
● On an array of size n takes O(log n) time!

On an array of a billion elements, need to
search 30 elements
(compared to a billion tries for linear search!)

Implementing binary search

Keep two indices lo and hi. They represent the part of the
array to search.

Let mid = (lo + hi) / 2 and look at a[mid] – then either
set lo = mid+1, or hi = mid-1, depending on the value of
a[mid]

1 2 2 3 3 4 5 7 8 9

lo himid

Implementing binary search

Keep two indices lo and hi. They represent the part of the
array to search.

Let mid = (lo + hi) / 2 and look at a[mid] – then either
set lo = mid+1, or hi = mid-1, depending on the value of
a[mid]

1 2 2 3 3 4 5 7 8 9

lo hi mid

hi = mid - 1

Sorting

Sorting

5 3 9 2 8 7 3 2 1 4

1 2 2 3 3 4 5 7 8 9

Zillions of sorting algorithms (bubblesort, insertion
sort, selection sort, quicksort, heapsort, mergesort, shell
sort, counting sort, radix sort, …)

Insertion sort

Imagine someone is dealing you cards.
Whenever you get a new card you put it into
the right place in your hand:

This is the idea of insertion sort.

Insertion sort

Sorting

Start by “picking up” the 5:

5 3 9 2 8

5

Insertion sort

Sorting

Then insert the 3 into the right place:

5 3 9 2 8

3 5

Insertion sort

Sorting

Then the 9:

5 3 9 2 8

3 5 9

Insertion sort

Sorting

Then the 2:

5 3 9 2 8

2 3 5 9

Insertion sort

Sorting

Finally the 8:

5 3 9 2 8

2 3 5 8 9

Complexity of insertion sort

Insertion sort does n insertions for an array
of size n
Does this mean it is O(n)? No! An insertion is
not constant time.
To insert into a sorted array, you must move
all the elements up one, which is O(n).
Thus total is O(n2).

In-place insertion sort

This version of insertion sort needs to make
a new array to hold the result
An in-place sorting algorithm is one that
doesn't need to make temporary arrays
● Has the potential to be more efficient

Let's make an in-place insertion sort!
Basic idea: loop through the array, and insert
each element into the part which is already
sorted

In-place insertion sort

The first element of the array is sorted:

5 3 9 2 8

5 3 9 2 8

White bit: sorted

In-place insertion sort

Insert the 3 into the correct place:

5 3 9 2 8

3 5 9 2 8

In-place insertion sort

Insert the 9 into the correct place:

3 5 9 2 8

3 5 9 2 8

In-place insertion sort

Insert the 2 into the correct place:

3 5 9 2 8

2 3 5 9 8

In-place insertion sort

Insert the 8 into the correct place:

2 3 5 9 8

2 3 5 8 9

In-place insertion

One way to do it: repeatedly swap the element with its
neighbour on the left, until it's in the right position

2 3 5 9 4

2 3 5 4 9

In-place insertion

2 3 4 5 9

2 3 5 4 9

while n > 0 and array[n] < array[n-1]
 swap array[n] and array[n-1]
 n = n-1

In-place insertion

An improvement: instead of swapping, move elements
upwards to make a “hole” where we put the new value

2 3 5 9 4

2 3 5 9

In-place insertion

2 3 5 9 4

2 3 5 9

2 3 5 9

In-place insertion sort

for i = 1 to n
 insert array[i] into array[0..i)

An aside: we have the invariant that array[0..i) is
sorted
● An invariant is something that holds whenever the

loop body starts to run
● Initially, i = 1 and array[0..1) is sorted
● As the loop runs, more and more of the array

becomes sorted

● When the loop finishes, i = n, so array[0..n) is
sorted – the whole array!

This notation
means

0, 1, …, i-1

Insertion sort

O(n2) in the worst case
O(n) in the best case (a sorted array)
Actually the fastest sorting algorithm in
general for small lists – it has low constant
factors

Divide and conquer

Very general name for a type of recursive
algorithm
You have a problem to solve.
● Split that problem into smaller subproblems
● Recursively solve those subproblems
● Combine the solutions for the subproblems to solve

the whole problem

To solve this...

1. Split the problem
into subproblems

2. Recursively solve
the subproblems

3. Combine
the solutions

Mergesort

We can merge two sorted lists into one in
linear time:

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4

Mergesort

A divide-and-conquer algorithm
To mergesort a list:
● Split the list into first and second halves
● Recursively mergesort the two halves
● Merge the two sorted lists together

Mergesort

1. Split the list into two equal parts

485 3 9 2 7 3 2 1

85 3 9 2 47 3 2 1

Mergesort

2. Recursively mergesort the two parts

85 3 9 2 47 3 2 1

853 92 4 7321

Mergesort

3. Merge the two sorted lists together

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4

Complexity of mergesort

An array of size n gets split into two arrays of
size n/2:

n

n/2 n/2

Complexity of mergesort

The recursive calls will split these arrays into four arrays
of size n/4:

n

n/2 n/2

n/4 n/4 n/4 n/4

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n
“levels”

O(n) time per level

...

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n
“levels”

O(n) time per level

Total time is
O(n log n)!

...

Merge sort is not in-place

● The merge operation is tricky to do in-place
(i.e. without using a second array). There is
no obvious way to do it, although several
attempts have been suggested.

● Therefore merge sort is not in-place. This is a
drawback of the algorithm.

Complexity analysis

Mergesort's complexity is O(n log n)
● Recursion goes log n “levels” deep
● At each level there is a total of O(n) work

General “divide and conquer” theorem:
● If an algorithm does O(n) work to split the input into

two pieces of size n/2 (or k pieces of size n/k)...
● ...then recursively processes those pieces...
● ...then does O(n) work to recombine the results...
● ...then the complexity is O(n log n)

Sorting so far

There are a huge number of sorting
algorithms
● No single best one, each has advantages (hopefully)

and disadvantages

Insertion sort:
● O(n2) so not good overall
● Good on small arrays though – low constant factors

Merge sort:
● O(n log n), hooray!
● But not in-place and high constant factors

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

