Binary search

Searching

Suppose I give you an array, and ask you to find if a particular value is in it, say 4.

$\begin{array}{llllllllll}5 & 3 & 9 & 2 & 8 & 7 & 3 & 2 & 1 & 4\end{array}$

The only way is to look at each element in turn.
This is called linear search.
You might have to look at every element before you find the right one.

Searching

But what if the array is sorted?

$$
\begin{array}{llllllllll}
1 & 2 & 2 & 3 & 3 & 4 & 5 & 7 & 8 & 9
\end{array}
$$

Then we can use binary search.

Binary search

Suppose we want to look for 4.
We start by looking at the element half way along the array, which happens to be 3 .

$\begin{array}{llllllllll}1 & 2 & 2 & 3 & 3 & 4 & 5 & 7 & 8 & 9\end{array}$

Binary search

3 is less than 4.
Since the array is sorted, we know that 4 must come after 3.
We can ignore everything before 3 .

$$
\begin{array}{llll}
4 & 5 & 7 & 8
\end{array}
$$

Binary search

Now we repeat the process.
We look at the element half way along what's left of the array. This happens to be 7 .

$$
\begin{array}{llll}
4 & 5 & 7 & 8
\end{array}
$$

Binary search

7 is greater than 4 .
Since the array is sorted, we know that 4 must come before 7 .
We can ignore everything after 7.

$$
45
$$

Binary search

We repeat the process.
We look half way along the array again.
We find 4 !

$$
45
$$

Performance of binary search

Binary search repeatedly chops the array in half

- If we double the size of the array, we need to look at one more array element
- With an array of size 2^{n}, after n tries, we are down to 1 element
- On an array of size n takes $\mathbf{O}(\boldsymbol{\operatorname { l o g }} \mathbf{n})$ time!

On an array of a billion elements, need to search $\mathbf{3 0}$ elements
(compared to a billion tries for linear search!)

Implementing binary search

Keep two indices lo and hi. They represent the part of the array to search.

$$
\begin{array}{lllll}
4 & 5 & 7 & 8 & 9
\end{array}
$$

Io mid hi

Let mid = (lo + hi) / 2 and look at a[mid] - then either set lo $=$ mid +1 , or hi $=$ mid-1, depending on the value of a[mid]

Implementing binary search

Keep two indices lo and hi. They repres array to search.

$$
\text { hi }=\operatorname{mid}-1
$$

Let mid = (lo + hi) / 2 and look at a[mid] - then either set lo $=$ mid +1 , or hi $=$ mid-1, depending on the value of a[mid]

Sorting

Sorting

$\begin{array}{llllllllll}5 & 3 & 9 & 2 & 8 & 7 & 3 & 2 & 1 & 4\end{array}$

$\begin{array}{llllllllll}1 & 2 & 2 & 3 & 3 & 4 & 5 & 7 & 8 & 9\end{array}$

Zillions of sorting algorithms (bubblesort, insertion sort, selection sort, quicksort, heapsort, mergesort, shell sort, counting sort, radix sort, ...)

Insertion sort

Imagine someone is dealing you cards.
Whenever you get a new card you put it into the right place in your hand:

This is the idea of insertion sort.

Insertion sort

$\begin{array}{lllllll}\text { Sorting } & 5 & 3 & 9 & 2 & 8\end{array}$

Start by "picking up" the 5 :

5

Insertion sort

Sorting
 53
 $9 \quad 2 \quad 8$

Then insert the 3 into the right place:

$$
35
$$

Insertion sort

$\begin{array}{llllll}\text { Sorting } & 5 & 3 & 9 & 2 & 8\end{array}$

Then the 9 :

$$
\begin{array}{lll}
3 & 5 & 9
\end{array}
$$

Insertion sort

$\begin{array}{llllll}\text { Sorting } & 5 & 3 & 9 & 2 & 8\end{array}$

Then the 2 :

$$
\begin{array}{llll}
2 & 3 & 5 & 9
\end{array}
$$

Insertion sort

$\begin{array}{llllll}\text { Sorting } & 5 & 3 & 9 & 2 & 8\end{array}$

Finally the 8:

$$
\begin{array}{lllll}
2 & 3 & 5 & 8 & 9
\end{array}
$$

Complexity of insertion sort

Insertion sort does n insertions for an array of size n
Does this mean it is $\mathrm{O}(\mathrm{n})$? No! An insertion is not constant time.
To insert into a sorted array, you must move all the elements up one, which is $\mathrm{O}(\mathrm{n})$.
Thus total is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

In-place insertion sort

This version of insertion sort needs to make a new array to hold the result
An in-place sorting algorithm is one that doesn't need to make temporary arrays

- Has the potential to be more efficient Let's make an in-place insertion sort!
Basic idea: loop through the array, and insert each element into the part which is already sorted

In-place insertion sort

$$
\begin{array}{lllll}
5 & 3 & 9 & 2 & 8
\end{array}
$$

The first element of the array is sorted:

$$
\begin{array}{lllll}
5 & 3 & 9 & 2 & 8
\end{array}
$$

White bit: sorted

In-place insertion sort

$$
\begin{array}{llllll}
5 & 3 & 9 & 2 & 8
\end{array}
$$

Insert the 3 into the correct place:

$$
\begin{array}{llllll}
3 & 5 & 9 & 2 & 8
\end{array}
$$

In-place insertion sort

$$
\begin{array}{llllll}
3 & 5 & 9 & 2 & 8
\end{array}
$$

Insert the 9 into the correct place:

$$
\begin{array}{lllll}
3 & 5 & 9 & 2 & 8
\end{array}
$$

In-place insertion sort

$$
\begin{array}{llllll}
3 & 5 & 9 & 2 & 8
\end{array}
$$

Insert the 2 into the correct place:

$$
\begin{array}{lllll}
2 & 3 & 5 & 9 & 8
\end{array}
$$

In-place insertion sort

$$
\begin{array}{lllll}
2 & 3 & 5 & 9 & 8
\end{array}
$$

Insert the 8 into the correct place:

$$
\begin{array}{lllll}
2 & 3 & 5 & 8 & 9
\end{array}
$$

In-place insertion

One way to do it: repeatedly swap the element with its neighbour on the left, until it's in the right position

$$
\begin{array}{lllll}
2 & 3 & 5 & 9 & 4
\end{array}
$$

$$
\begin{array}{l|l|l|l}
2 & 3 & 5 & 4
\end{array} 9
$$

In-place insertion

$$
\begin{array}{lllll}
2 & 3 & 5 & 4 & 9
\end{array}
$$

$\begin{array}{lllll}2 & 3 & 4 & 5 & 9\end{array}$

while $n>0$ and $\operatorname{array[n]~<~array[n-1]~}$ swap array[n] and array[n-1]
$\mathrm{n}=\mathrm{n}-1$

In-place insertion

An improvement: instead of swapping, move elements upwards to make a "hole" where we put the new value

$$
\begin{array}{lllll}
2 & 3 & 5 & 9 & 4
\end{array}
$$

$$
\begin{array}{l|l|l|l}
2 & 3 & 5 & 9
\end{array}
$$

In-place insertion

In-place insertion sort

for $i=1$ to n insert array[i] into arra-

This notation means
$0,1, \ldots, i-1$

An aside: we have the invariant that array[0. . i) is sorted

- An invariant is something that holds whenever the loop body starts to run
- Initially, $\mathrm{i}=1$ and array[0. .1) is sorted
- As the loop runs, more and more of the array becomes sorted
- When the loop finishes, $i=n$, so array[0. n) is sorted - the whole array!

Insertion sort

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ in the worst case
$\mathrm{O}(\mathrm{n})$ in the best case (a sorted array)
Actually the fastest sorting algorithm in general for small lists - it has low constant factors

Divide and conquer

Very general name for a type of recursive algorithm
You have a problem to solve.

- Split that problem into smaller subproblems
- Recursively solve those subproblems
- Combine the solutions for the subproblems to solve the whole problem

To solve this...

1. Split the problem into subproblems

2. Recursively solve the subproblems
3. Combine
the solutions

Mergesort

We can merge two sorted lists into one in linear time:

Mergesort

A divide-and-conquer algorithm To mergesort a list:

- Split the list into first and second halves
- Recursively mergesort the two halves
- Merge the two sorted lists together

Mergesort

1. Split the list into two equal parts

53
 9
 2
 8
 7
 3
 2
 14

$$
\begin{array}{llllllllll}
5 & 3 & 9 & 2 & 8 & 7 & 3 & 2 & 1 & 4
\end{array}
$$

Mergesort

2. Recursively mergesort the two parts

53
 2
 8
 7
 $3 \quad 2$
 14

23
 5
 8
 9

123
47

Mergesort

3. Merge the two sorted lists together

23
 8
 9

12
3
47

Complexity of mergesort

An array of size n gets split into two arrays of size $\mathrm{n} / 2$:
n

n/2

n/2

Complexity of mergesort

The recursive calls will split these arrays into four arrays of size $\mathrm{n} / 4$:

n

$\boldsymbol{\operatorname { l o g }} \mathbf{n}$ "levels"
$\mathbf{O (n)}$ time per level

n

n/2

Total time is
$\mathbf{O}(\mathbf{n} \log \mathrm{n})$!

$\mathbf{O (n)}$ time per level

Merge sort is not in-place

- The merge operation is tricky to do in-place (i.e. without using a second array). There is no obvious way to do it, although several attempts have been suggested.
- Therefore merge sort is not in-place. This is a drawback of the algorithm.

Complexity analysis

Mergesort's complexity is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

- Recursion goes $\log \mathrm{n}$ "levels" deep
- At each level there is a total of $O(n)$ work

General "divide and conquer" theorem:

- If an algorithm does $\mathrm{O}(\mathrm{n})$ work to split the input into two pieces of size $\mathrm{n} / 2$ (or k pieces of size n / k)...
- ...then recursively processes those pieces...
- ...then does $\mathrm{O}(\mathrm{n})$ work to recombine the results...
- ...then the complexity is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Sorting so far

There are a huge number of sorting algorithms

- No single best one, each has advantages (hopefully) and disadvantages

Insertion sort:

- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ so not good overall
- Good on small arrays though - low constant factors

Merge sort:

- O(n log n), hooray!
- But not in-place and high constant factors

