

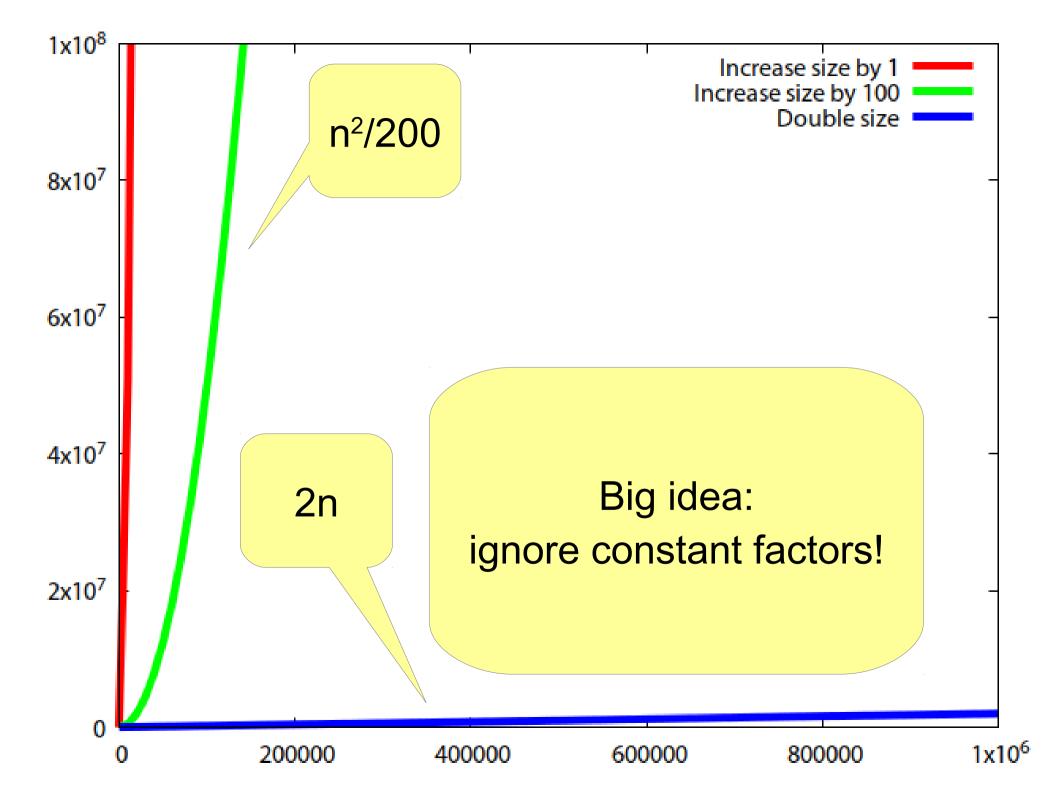
Complexity

This lecture is all about how to describe the performance of an algorithm

Last time we had three versions of the filereading program. For a file of size *n*:

- The first one needed to copy n²/2 characters
- The second one needed to copy n²/200 characters
- The third needed to copy 2n characters

We worked out these formulas, but it was a bit of work – now we'll see an easier way



Big O (sv: Ordo) notation

Instead of saying...

- The first implementation copies n²/2 characters
- The second copies n²/200 characters
- The third copies 2n characters

We will just say...

- The first implementation copies O(n²) characters
- The second copies O(n²) characters
- The third copies **O(n)** characters

O(n²) means "proportional to n²" (almost)

Time complexity

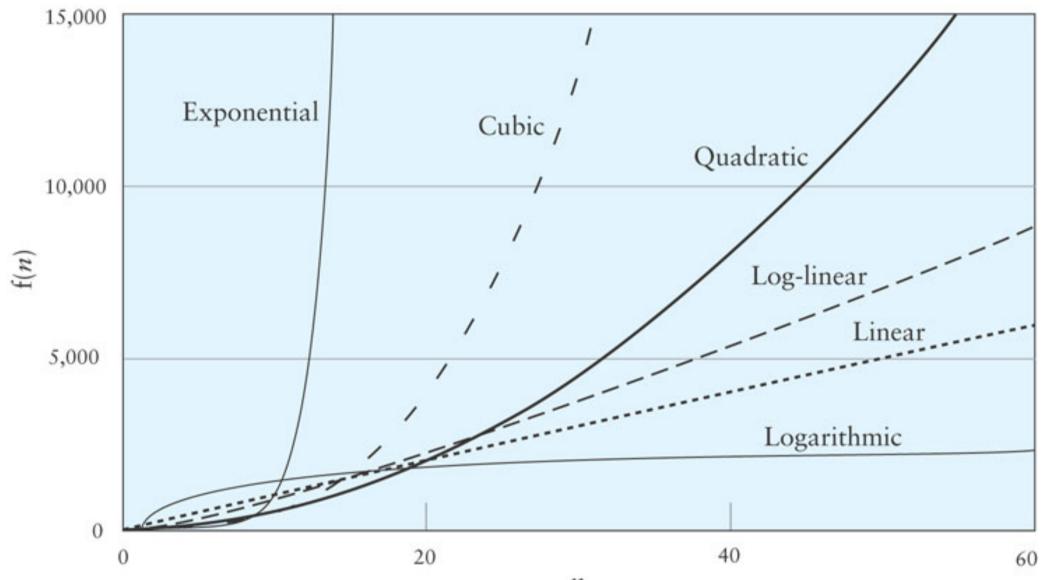
With big-O notation, it doesn't matter whether we count steps or time!

As long as each step takes a constant amount of time:

- if the number of steps is proportional to n²
- then the amount of time is proportional to n²

We say that the algorithm has O(n²) time complexity or simply complexity

Big-O	Name
O(1)	Constant
$O(\log n)$	Logarithmic
O (<i>n</i>)	Linear
$O(n \log n)$	Log-linear
$O(n^2)$	Quadratic
$O(n^3)$	Cubic
O (2 ^{<i>n</i>})	Exponential



Growth rates

Imagine that we double the input size from n to 2n.

If an algorithm is...

- O(1), then it takes the same time as before
- O(log n), then it takes a constant amount more
- O(n), then it takes twice as long
- O(n log n), then it takes twice as long plus a little bit more
- O(n²), then it takes four times as long

If an algorithm is $O(2^n)$, then adding *one element* makes it take twice as long

Big O tells you how the performance of an algorithm is affected by the input size

A sneak peek

Outer loop runs O(n) times

boolean unique(Object[] a) {

for(int i = 0; i < a.length; i++)</pre>

for (int j = 0; j < i; j++)

if (a[i].equals(a[j]))

return false;

return true; $O(n) \times O(n) = O(n^2)$ Inner loop runs O(n) times for each outer loop

The mathematics of big O

Big O, formally

Big O measures the growth of a *mathematical function*

- Typically a function T(*n*) giving the number of steps taken by an algorithm on input of size *n*
- But can also be used to measure *space complexity* (memory usage) or anything else

So for the file-copying program:

- $T(n) = n^2/2$
- T(n) is O(n²)

Big O, formally

What does it mean to say "T(n) is O(n²)"? We could say it means T(n) is proportional to n²

- i.e. T(n) = kn² for some k
- e.g. $T(n) = n^2/2$ is $O(n^2)$ (let k = $\frac{1}{2}$)

But this is too restrictive!

- We want T(n) = n(n-1)/2 to be $O(n^2)$
- We want $T(n) = n^2 + 1$ to be $O(n^2)$

Big O, formally

Instead, we say that T(n) is $O(n^2)$ if:

- T(n) ≤ kn² for some k,
 i.e. T(n) is proportional to n² or lower!
- This only has to hold for *big enough* n:
 i.e. for all n above some threshold n₀

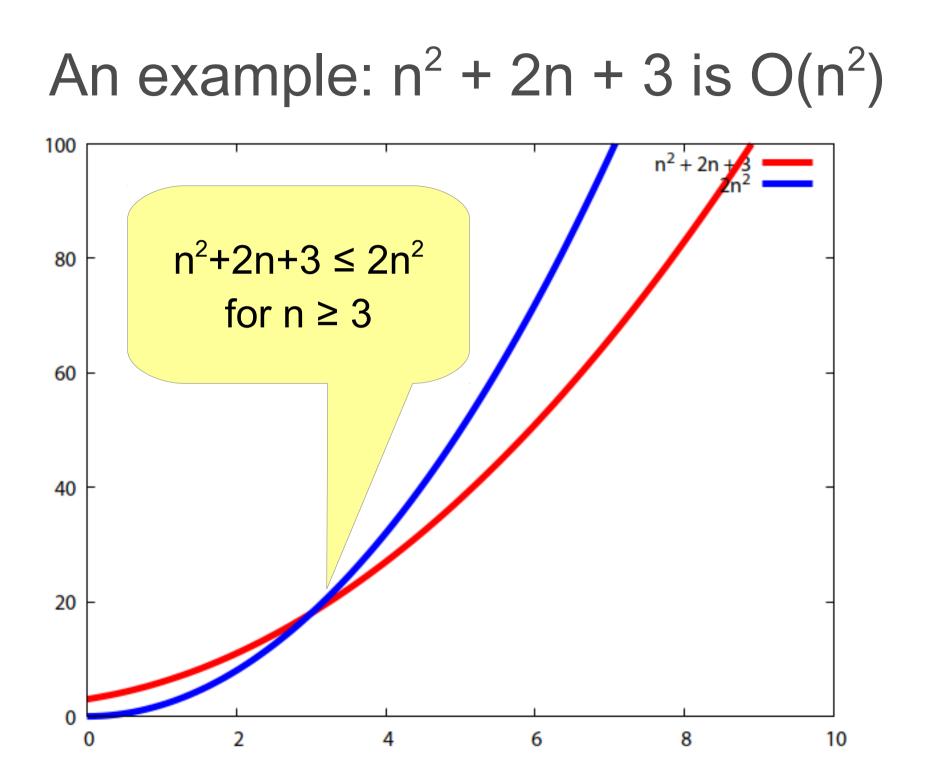
If you draw the graphs of T(n) and kn^2 , at some point the graph of kn^2 must permanently overtake the graph of T(n)

• In other words, T(n) grows more slowly than kn²

Note that big-O notation is allowed to *overestimate* the complexity!

Compact definition of Big O:

 $T(n) \in O(f(n))$ when $\exists k, n_0: T(n) \leq kf(n)$ for $n \geq n_0$



More examples

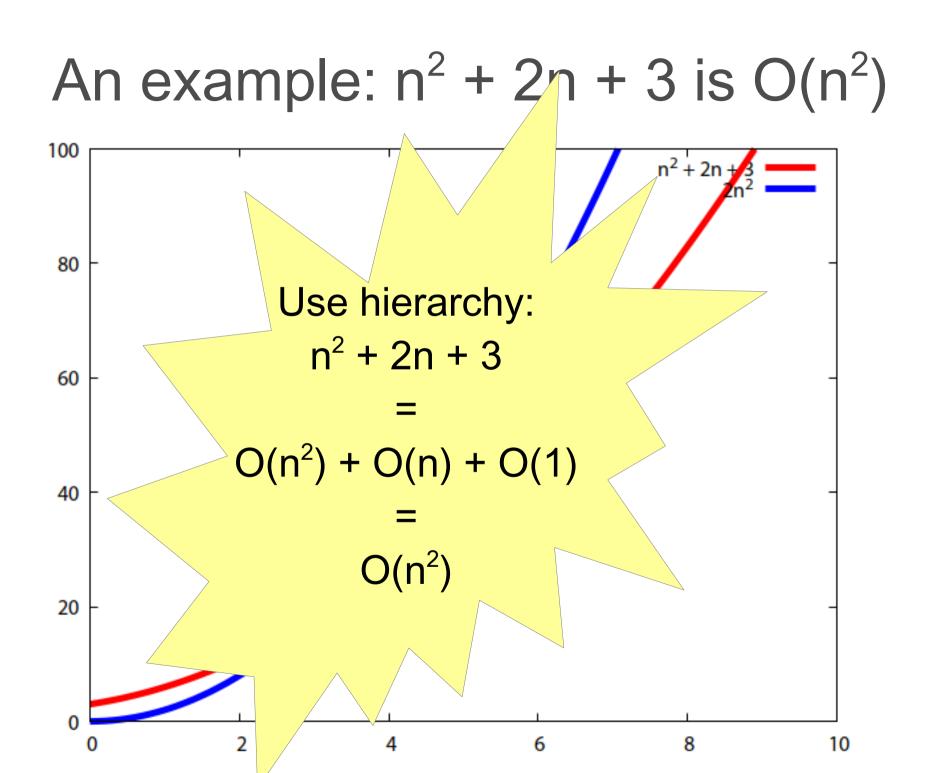
- Is 3n + 5 in O(n)?
- Is n² + 2n + 3 in O(n³)?
- Is it in O(n)?
- Is 5 in O(1)?

Adding big O (a hierarchy)

 $O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$

When adding a term lower in the hierarchy to one higher in the hierarchy, the lower-complexity term disappears:

 $O(1) + O(\log n) = O(\log n)$ $O(\log n) + O(n^k) = O(n^k) \text{ (if } k \ge 0)$ $O(n^j) + O(n^k) = O(n^k) \text{, if } j \le k$ $O(n^k) + O(2^n) = O(2^n)$



Quiz

What are these in Big O notation?

- n² + 11
- 2n³ + 3n + 1
- n⁴ + 2ⁿ

Just use hierarchy!

- $n^{2} + 11 = O(n^{2}) + O(1) = O(n^{2})$ $2n^{3} + 3n + 1 = O(n^{3}) + O(n) + O(1) =$ $O(n^{3})$
- $n^4 + 2^n = O(n^4) + O(2^n) = O(2^n)$

Multiplying big O

- O(this) × O(that) = O(this × that)
- e.g., $O(n^2) \times O(\log n) = O(n^2 \log n)$
- You can drop constant factors:
 - $k \times O(f(n)) = O(f(n))$, if k is constant
 - e.g. $2 \times O(n) = O(n)$

(Exercise: show that these are true)

Quiz

What is $(n^2 + 3)(2^n \times n) + \log_{10} n$ in Big O notation?

Answer

- $(n^{2} + 3)(2^{n} \times n) + \log_{10} n$
- $= O(n^2) \times O(2^n \times n) + O(\log n)$
- $= O(2^n \times n^3) + O(\log n)$ (m 'tiplication)
- = $O(2^n \times n^3)$ (hierarchy)

log₁₀n = log n / log 10 i.e. log n times a constant factor

Big O and related concepts

f(n) is asymptotically an upper bound of the growth rate of T(n):

 $T(n) \in O(f(n))$ when $\exists k, n_0: T(n) \leq kf(n)$ for $n \geq n_0$

f(n) is asymptotically a lower bound of the growth rate of T(n):

 $T(n) \in \Omega(f(n))$ when $\exists k, n_0: T(n) \ge kf(n)$ for $n \ge n_0$

f(n) is asymptotically a lower and upper bound of the growth rate of T(n):

 $T(n) \in \Theta(f(n))$ when $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$

Reasoning about programs

Cost Models

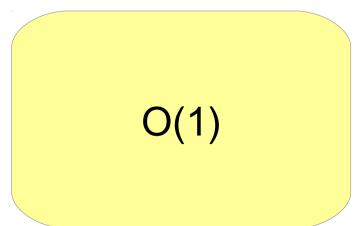
We need to simplify how computers work.

- Uniform model:
 - Unbounded numbers (not limited to e.g. 64 bits)
 - Infinite memory
- Logarithmic model:
 - Data size is measured in number of bits
 - Infinite memory

In most cases we'll use the uniform model.

Most "primitive" operations take constant time:

```
int add(int x, int y) {
   return x + y;
```



Complexity of loops

The complexity of a loop is: the number of times it runs times the complexity of the body

- What about loops?
- (Assume the arrays size is *n*)

```
void add(double[] a, double[] b) {
 for (int i = 0; i < a.length; i++)
    a[i] += b[i];
}</pre>
```

- What about loops?
- (Assume the arrays size is *n*)
- void add(double[] a, double[] b) {
 for (int i = 0; i < a.length; i++)
 a[i] += b[i];</pre>

Loop runs O(n) times

O(1) × O(n) = **O(n)**

Loop body takes O(1) time

- What about loops?
- (Assume the array size is *n*)
- boolean member(Object[] array, Object x) {
 for (int i = 0; i < array.length; i++)
 if (array[i].equals(x))
 return true;
 return false;</pre>

Worst case complexity

- Often not only the size of the data influences the running time, but also the values.
- The longest possible running time for a given data size is called the worst case complexity (sv: värsta falls-komplexiteten)
- You can also compute the best case complexity, but it's not as useful since what you want in most cases is a guarantee that running a program will not take more than a certin time.

What about loops?

(Assume the array size is *n*)

boolean member(Object[] array, Object x) { for (int i = 0; i < array.length; i++) Loop runs if (array[i].equals(x)) O(n) times in return true; worst case return false: Worst case Loop body takes complexity: 1) time × O(n) = **O(n)**

What about this one?

boolean unique(Object[] a) {

for(int i = 0; i < a.length; i++)</pre>

- for (int j = 0; j < a.length; j++)
 - if (a[i].equals(a[j]) && i != j)

return false;

return true;

What about this op
$$2^{\circ}$$

boolean unique(Object[] a) {
for(int i = 0; i < a.length; i++)
for (in i = 0; j < a.length; j++)
if Inner loop runs && i != j
n times:
 $O(n) \times O(1) = O(n)$
retur
}
Loop body:
 $O(1)$

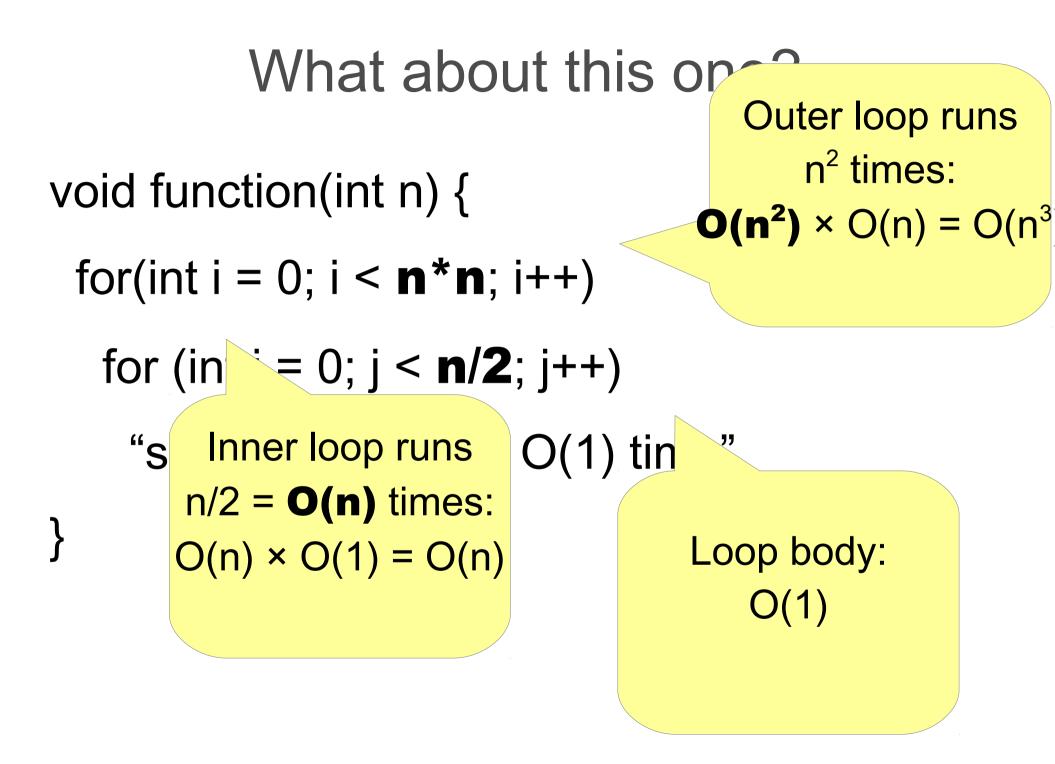
What about this one?

```
void function(int n) {
```

```
for(int i = 0; i < n*n; i++)
```

```
for (int j = 0; j < n/2; j++)
```

"something taking O(1) time"



Here's a new one

boolean unique(Object[] a) {

for(int i = 0; i < a.length; i++)</pre>

if (a[i].equals(a[j]))

return false;

return true;

Here's a new one

boolean unique(Object[] a) {

for(int i = 0; i < a.length; i++)</pre>

if Inner loop is
 i × O(1) = O(i)??
 But it should be
 in terms of n?

Body is O(1)

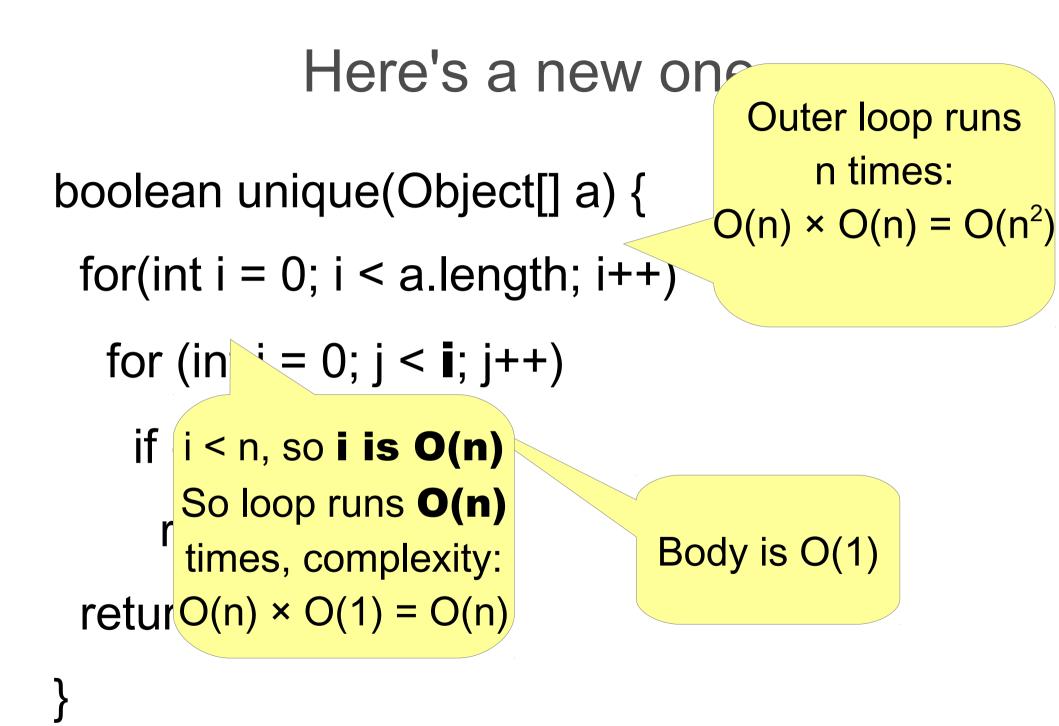
Here's a new one

boolean unique(Object[] a) {

for(int i = 0; i < a.length; i++)</pre>

if i < n, so **i is O(n)** r So loop runs **O(n)** times, complexity: retur $O(n) \times O(1) = O(n)$

Body is O(1)



The example from earlier

```
void something(Object[] a) {
 for(int i = 0; i < a.length; i++)
   for (int i = 0; i < i; i++)
    for (int k = 0; k < j; k++)
      "son
                   i < n, j < n, k < n,
           so all three loops run O(n) times
                    Total runtime is
          O(n) \times O(n) \times O(n) \times O(1) = O(n^3)
```

What's the complexity?

void something(Object[] a) {

for(int i = 0; i < a.length; i++)

for (int j = 1; j < a.length; **j *= 2**)

... // something taking O(1) time

```
Outer loop is
O(n log n)
                                          Inner loop is
  void sc nething(Object[] a) {
                                            O(log n)
   for(int i = 0; i < a.length; i++)</pre>
    for (int j = 1; j < a.length; j *= 2)
      \dots // something taking O(1) time
```

A loop running through i = 1, 2, 4, ..., nruns **O(log n)** times!

While loops

long squareRoot(long n) {

```
long i = 0;
long j = n+1;
while (i + 1 != j) {
   long k = (i + j) / 2;
   if (k^*k \le n) i = k;
   else j = k;
}
return i;
```

Each iteration takes O(1) time... but how many times does the loop run?

While loops

long squareRoot(long n) {

```
long i = 0;
long j = n+1;
while (i + 1 != j) {
   long k = (i + j) / 2;
   if (k^*k \le n) i = k;
   else j = k;
}
return i;
```

Each iteration takes O(1) time

...and halves j-i, so **O(log n)** iterations

Summary: loops

Basic rule for complexity of loops:

- Number of iterations times complexity of body
- for (int i = 0; i < n; i++) ...: n iterations
- for (int i = 1; i \leq n; i \leq 2): O(log n) iterations
- While loops: same rule, but can be trickier to count number of iterations
- If the complexity of the body depends on the value of the loop counter:
- e.g. O(i), where $0 \le i < n$
- round i up to O(n)!

Sequences of statements

What's the complexity here? (Assume that the loop bodies are O(1)) for (int i = 0; i < n; i++) ... for (int i = 1; i < n; i *= 2) ...

Sequences of statements

What's the complexity here? (Assume that the loop bodies are O(1)) for (int i = 0; i < n; i++) ... for (int i = 1; i < n; i *= 2) ... First loop: **O(n)** Second loop: O(log n) Total: $O(n) + O(\log n) = O(n)$

For sequences, add the complexities!

A familiar scene

```
int[] array = {};
for (int i = 0; i < n; i++) {
  int[] newArray =
    new int[array.length+1];
  for (int j = 0; j < i; j++)
    newArray[j] = array[j];
  newArray = array;
```

Assume that each statement takes O(1) time

A familiar scene
int[] array = {};
for (int i = 0; i < n; i++) {
int[] newArr
$$y =$$

new int[arr \cdot .length+1];
for (int j = 0; i \cdot i++)
newArray
newArray =
}
Linner loop
O(n),
so loop body
O(n) + O(n) = O(n)
Duter loop:
n iterations,
O(n) body,
so O(n²)

```
int[] array = {};
for (int i = 0; i < n; i+=100) {
  int[] newArray =
    new int[array.length+100];
  for (int j = 0; j < i; j++)
    newArray[j] = array[j];
  newArray = array;
```

```
int[] array = {};
for (int i = 0; i < n; i+=100) {
  int[] newArr
     new int[arr .length+100];
  for (int j = 0; Outer loop:
     newArray<sup>n/100</sup> iterations,
                  which is O(n)
  newArray =
                  O(n) body,
                  so O(n<sup>2</sup>) still
```

```
int[] array = \{0\};
for (int i = 1; i <= n; i*=2) {
  int[] newArray =
    new int[array.length*2];
  for (int i = 0; i < i; j++)
    newArray[j] = array[j];
  newArray = array;
```

```
int[] array = \{0\};
    for (int i = 1; i <= n; i*=2) {
   Outer loop: wArray =
 log n iterations, nt[array.length*2];
O(n) body,
so O(n log n)??
Marray[j] = array[j];
      newArray = array;
```

```
int[] array = \{0\};
for (int i = 1; i <= n; i*=2) {
  int[] newArray =
    new int[array.length*2];
  for (int j = 0; Here we
    newArray "round up"
                 O(i) to O(n).
  newArray
                This causes an
                 overestimate!
```

A complication

Our algorithm has O(n) complexity, but we've calculated O(n log n)

- An overestimate, but not a severe one (If n = 1000000 then n log n = 20n)
- This can happen but is normally not severe
- To get the right answer: do the maths

Good news: for "normal" loops this doesn't happen

 If all bounds are n, or n², or another loop variable, or a loop variable squared, or ...

Main exception: loop variable *i* doubles every time, body complexity depends on *i*

Doing the sums

In our example:

- The inner loop's complexity is O(i)
- In the outer loop, i ranges over 1, 2, 4, 8, ..., 2^a

Instead of rounding up, we will add up the time for all the iterations of the loop:

$$1 + 2 + 4 + 8 + \dots + 2^a$$

$$= 2 \times 2^{a} - 1 < 2 \times 2^{a}$$

Since $2^a \le n$, the total time is at most 2n, which is O(n)

A last example

```
The outer loop
                                                    The j-loop
runs O(log n)
                    A last example
                                                  runs n<sup>2</sup> times
     times
    for (int i = 1; i <= n; i *= 2) {
      for (int j = 0; j < n^*n; j++)
        for (int k = 0; k \le j; k++)
          // O(1)
      for (int j = 0; j < n; j++)
                                                    k <= j < n*n
        // O(1)
                                                   so this loop is
                              This loop is
    }
                                                        O(n^2)
                                   O(n)
```

Total: $O(\log n) \times (O(n^2) \times O(n^2) + O(n))$ = $O(n^4 \log n)$

Nested loops with dependent iteration intervals

How many steps does this function take on an array of length *n* (in the worst case)?

boolean unique(Object[] a) {

```
for(int i = 0; i < a.length; i++)</pre>
```

```
for (int j = 0; j < a.length; j++)
```

if (a[i].equals(a[j]) && i != j)

return false;

return true;

Assume that loop body takes 1 step

What happens without big O?

vCti How many steps does this ake on an array of length n (in WC boolean unique(Objec Outer loop runs *n* times for(int i = 0; i < a Each time, inner loop for (int j = 0runs n times if (a[i].equals Total: $n \times n = n^2$ return false return true;

What about this one?

boolean unique(Object[] a) {

for(int i = 0; i < a.length; i++)</pre>

for (int j = 0; j < **i**; j++)

if (a[i].equals(a[j])) return false;

return true;

Loop runs to *i* instead of *n*

Some hard sums

When i = 0, inner loop runs 0 times When i = 1, inner loop runs 1 time

When i = n-1, inner loop runs n-1 times

Total:

. . .

•
$$\sum_{i=0}^{n-1} i = 0 + 1 + 2 + \dots + n-1$$

which is n(n-1)/2

What about this one?

boolean unique(Object[] a) { for(int i = 0; i < a.length; i++)</pre> for (int j = 0; j < i; j+ if (a[i].equals(a) Answer: *n*(*n*-1)/2 return false; return true;

What about this one?

```
void something(Object[] a) {
 for(int i = 0; i < a.length; i++)
  for (int i = 0; i < i; i++)
    for (int k = 0; k < j; k++)
     "something that takes 1 step"
```

More hard sums

n-1 i-1 j-1

 $i=0 \ j=0 \ k=0$

Inner loop: *k* goes from 0 to j-1

Outer loop: *i* goes from 0 to *n-1*

> Middle loop: *j* goes from 0 to i-1

Counts: how many values *i*, *j*, *k* where $0 \le i < n, 0 \le j < i, 0 \le k \le j$

More hard sums

n-1 i-1 j-1

i = 0 j = 0 k = 1

Wolfram Alpha says it's n(n-1)(n-2)/6

1

Counts: how many values *i*, *j*, *k* where $0 \le i < n, 0 \le j < i, 0 \le k \le j$

What about this one?

void something(Object[] a) { for(int i = 0; i < a.length; i++)</pre> for (int j = 0; j < i; j+ Answer: for (int k = 0; kn(n-1)(n-2)/6, "something th apparently

Amortized analysis

A single append-operation for a dynamic

```
public void append(char c) {
array:
                   if (size == string.length) {
                     // Create a new array, twice as big as before.
                     char[] newString = new char[string.length*2];
                     for (int i = 0; i < string.length; i++)
                       newString[i] = string[i];
                     string = newString;
                   }
                  string[size] = c;
                  size++;
Time complexity: O(n) in worst case,
which is pessimistic.
```

Amortized analysis

- Amortized analysis measures how much time each operation will take in a sequence of operations.
- For the append method of a dynamic array the amortized complexity is O(1)
- There are different methods for amortized analysis
- One is the potential method where you "pay" in advance for future high-cost executions in such a way that you never run out of saved "coins".

Big O in retrospect

We lose some precision by throwing away constant factors

...you probably *do* care about a factor of 100 performance improvement

On the other hand, life gets much simpler:

- A small phrase like O(n²) tells you a lot about how the performance *scales* when the input gets big
- It's a lot easier to calculate big-O complexity than a precise formula (lots of good rules to help you)

Big O is normally a good compromise!

Occasionally, need to do hard sums anyway :(

Complexity of recursive functions

Recurrence equations

• The general way to calculate complexity for a recursive function is to write a set of recurrence equations.

```
• E.g.:
    fcn f(n) {
        if (n == 0) return x;
        somecode1
        f(n-1)
        somecode2
    }
```

• If somecode1 + somecode2 has complexity O(n) the recurrence equations for this function's complexity is (we drop the O(..)):

$$T(0) = 1$$

T(n) = n + T(n-1) when n > 0

Solving reccurrence equations

- There isn't a general way of solving any recurrence relation – we'll just see a few families of them.
- In general you have to guess a solution function (possible parameterized).
- You can then by induction confirm that the function is correct.

Example: T(n) = O(n) + T(n-1)T(n) = n + T(n-1)= n + (n-1) + T(n-2) = n + (n-1) + (n-2) + T(n-3)= ... = n + (n-1) + (n-2) + ... + 1 + T(0)= n(n+1) / 2 + T(0) $= O(n^2)$

Example: T(n) = O(1) + T(n-1)

- T(n) = 1 + T(n-1)
- = 2 + T(n-2)
- = 3 + T(n-3)
- =
- = n + T(0)
- = O(n)

Example: T(n) = O(1) + T(n/2)

- T(n) = 1 + T(n/2)
- = 2 + T(n/4)
- = 3 + T(n/8)
- = ...
- $= \log n + T(1)$
- $= O(\log n)$

Another example: T(n) = O(n) + T(n/2)

- T(n) = n + T(n/2):
- T(n) = n + T(n/2)
- = n + n/2 + T(n/4)
- = n + n/2 + n/4 + T(n/8)
- = ...
- = n + n/2 + n/4 + ...
- < 2n
- = O(n)

Functions that recurse once

$$T(n) = O(1) + T(n-1): T(n) = O(n)$$

$$T(n) = O(n) + T(n-1): T(n) = O(n^{2})$$

$$T(n) = O(1) + T(n/2): T(n) = O(\log n)$$

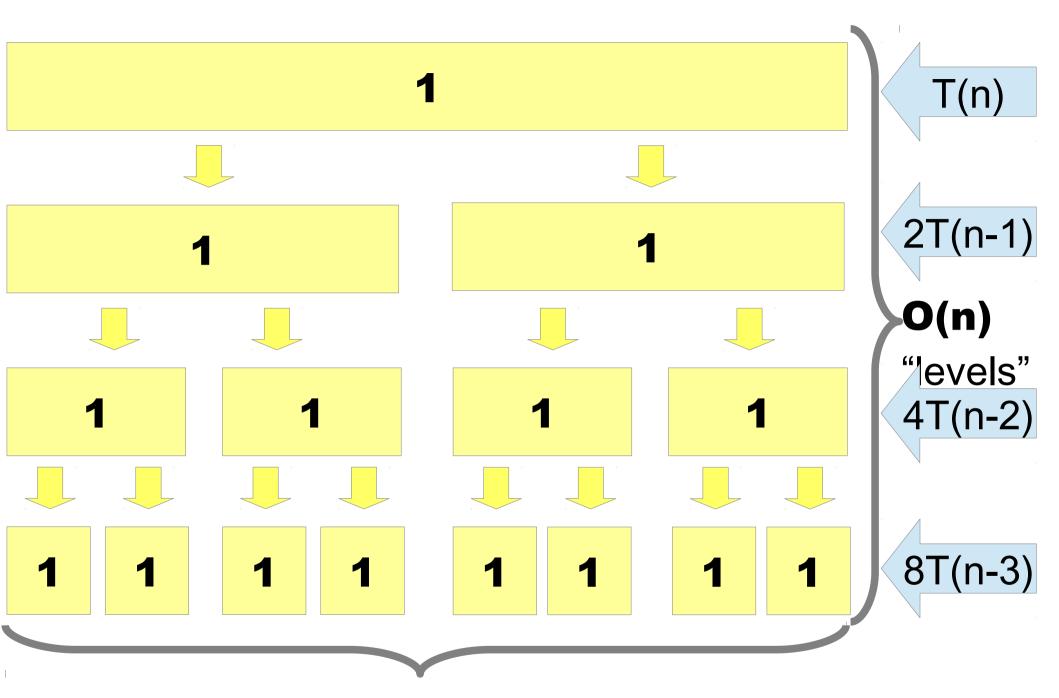
$$T(n) = O(n) + T(n/2): T(n) = O(n)$$

An almost-rule-of-thumb:

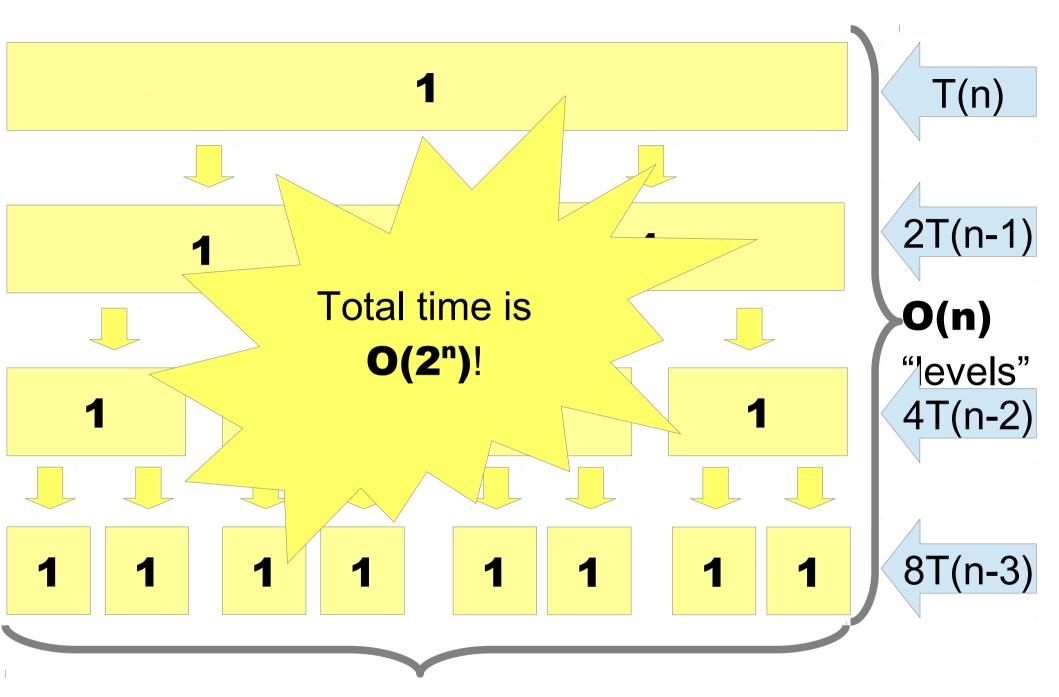
• Solution is maximum recursion depth times amount of work in one call

(except that this rule of thumb would give O(n log n) for the last case)

Example of function that does two recursive calls: T(n) = O(1) + 2T(n-1)



amount of work doubles at each level



amount of work doubles at each level

Complexity of recursive functions

Basic idea – recurrence relations Easy enough to write down, hard to solve

- One technique: expand out the recurrence and see what happens
- Another rule of thumb: multiply work done per level with number of levels
- Drawing a diagram might help