
Miscellaneous

Amortised complexity analysis

Dynamic arrays, hash tables, skew heaps etc. have amortised
complexity
● e.g. skew heaps: O(log n) amortised complexity means a sequence of n

operations takes O(n log n) time

We analysed the complexity of dynamic arrays and for skew heaps.
Amortised analysis gives us cute tools to calculate amortised
complexity
● e.g. the banker’s method: there is a “piggy bank” containing a number of units of

time
● operations can choose to put time into the piggy bank; this time is counted as

part of their running time
● expensive operations can empty the piggy bank and use the time in it, which is

subtracted from their actual running time
● by saving and taking out exactly the right amount of time from the piggy bank,

you can analyse the operations as if they had non-amortised complexity

Standard libraries

● Java:
● List, ArrayList, LinkedList
● Stack
● Deque, LinkedList, ArrayDeque
● Set, HashSet, TreeSet
● Map, HashMap, TreeMap
● PriorityQueue
● Comparator, Comparable, equals and hashCode in Object
● Iterator

● Haskell:
● Data.Map, Data.Set, Data.Queue, Data.PriorityQueue
● Eq, Ord

Summing up

Basic ADTs

Maps: maintain a key/value relationship
● An array is a sort of map where the keys are array indices

Sets: like a map but with only keys, no values

Queue: add to one end, remove from the other
Stack: add and remove from the same end
Deque: add and remove from either end

Priority queue: add, remove minimum

Implementing maps and sets

A binary search tree
● Good performance if you can keep it balanced: O(log n)
● Has good random and sequential access: the best of both

worlds

A hash table
● Very fast if you choose a good hash function: O(1)

A skip list
● Quite simple to implement
● Only appropriate for imperative languages
● Probabilistic performance only, typically: O(log n)

Implementing queues, stacks,
priority queues

Queues:
● a circular array (in an imperative language)
● a pair of lists (in a functional language)

Stacks:
● a dynamic array (in an imperative language)
● a list (in a functional language)

Priority queues:
● a binary heap (in an imperative language)
● a skew heap (in a functional language)

What we have studied

The data structures and ADTs above
+ algorithms that work on these data
 structures (sorting, Dijkstra's, etc.)
+ complexity
+ data structure design (invariant, etc.)
You can apply these ideas to your own programs,
data structures, algorithms etc.
● Using appropriate data structures to simplify your programs

+ make them faster
● Taking ideas from existing data structures when you need to

build your own

Data structure design

First, identify what operations the data
structure must support
● Often there's an existing data structure

you can use
● Or perhaps you can adapt an existing

one?
Then decide on:
● A representation (tree, array, etc.)
● An invariant

These hopefully drive the rest of the design!

Data structure design

Keep things simple!
● No point optimising your algorithms to have O(log n)

complexity if it turns out n ≤ 10
● Profile your program to find the bottlenecks are
● Use big-O complexity to get a handle on performance

before you start implementing it

A couple of things we
didn’t have time for

Sorting and trees

● Sorting which doesn’t compare elements
pairwise:
● Bucket sort: Have a bucket for each equality class and

put each element in right bucket
● Radix sort: For integers do a bucket sort for each digit

● Prefix trees: For strings, each node has a child
for each possible first character of the rest of
the string. All words which begin with a
certain prefix can be found in one sub tree.

Splay trees

Splay trees are a self-balancing BST having amortised
O(log n) complexity
● The main operation: splaying uses rotations to move a given

node to the root of the tree
● Insertion: use BST insertion and splay the new node
● Deletion: use BST deletion and splay the parent of the deleted

node
● Lookup: use BST lookup and splay the closest node

Because lookup does splaying, frequently-used values
are quicker to access!
Too hard to analyse complexity for this course
(amortised)

The limits of sorting

All the sorting algorithms we’ve seen take at
least O(n log n) time. Is there a reason for
that?
Yes! It turns out any sorting algorithm based
on comparing list elements (e.g. a[i] < a[j])
must take O(n log n) time.
Sorting algorithms not based on comparisons
can break this barrier
● e.g., sorting algorithms for integers can get to O(n)

time by using modular arithmetic (see radix sort)

Real-world performance

Constant factors are important!
Simple algorithms tend to have worse complexity but better constant
factors. Keep in mind that for small data the simple algorithm can be
fastest.
Perhaps the most important factor: the processor’s cache
● It takes about 200 clock cycles for the processor to read data from memory
● The cache is a fast area of memory built into the processor, which stores the values of

recently-accessed memory locations
● It’s ~32KB, and reading data stored in it takes ~1 clock cycle

If your program accesses the same or nearby memory locations frequently
(good locality), it will run faster because the things it reads are more likely to
be in the cache
● The elements of an array are stored contiguously in memory – this makes it much better for

locality than e.g. a linked list
● Accessing the elements of an array in increasing or decreasing order is especially good – the

processor has special circuitry to detect this, and will start prefetching the array, reading
elements into the cache before your program asks to read them

● This is one reason why quicksort is quick!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

