
Breadth-first search



Breadth-first search

A breadth-first search (BFS) in a graph visits
the nodes in the following order:
● First it visits some node (the start node)
● Then all the start node's immediate neighbours
● Then their neighbours
● and so on

So it visits the nodes in order of how far
away they are from the start node



Implementing breadth-first search

We maintain a queue of nodes that we are
going to visit soon
● Initially, the queue contains the start node

We also remember which nodes we've already
added to the queue
Then repeat the following process:
● Remove a node from the queue
● Visit it
● Find all adjacent nodes and add them to the queue,

unless they've previously been added to the queue



Example of a breadth-first search
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Example of a breadth-first search
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remove node
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and visit it



Example of a breadth-first search
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Example of a breadth-first search
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Example of a breadth-first search
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(only unvisited ones)
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Example of a breadth-first search
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Example of a breadth-first search
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Visit order:
0 3 1

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

2 is already
in the queue, so

we don't add
it again



Example of a breadth-first search
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Example of a breadth-first search
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Queue:
4 6 7 9 8

Visit order:
0 3 1 2

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

Skip to the end...



Example of a breadth-first search
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Queue:

Visit order:
0 3 1 2 4
6 7 9 8 5

We reach step 1, but
the queue is empty,

and we're finished!



Why does using a queue work?

The queue in BFS always contains nodes that are n distance
from the start node, followed by nodes that are n+1 distance
away:

When we remove the node from the head of the queue
(distance n), we add its neighbours (distance n+1) to the end
– so this situation remains true
This means that we explore all nodes of distance n before
getting to distance n+1
● Once we remove the first distance n+1 node, the queue will contain nodes

of distance n+1 and n+2, so we go up in order of distance

... ...

distance n distance n+1



Breadth-first search trees

While doing the BFS, we can
record which node we came
from when visiting each
node in the graph
(we do this when adding
a node to the queue)
We can use this information
to find the shortest path from
the start node to any other node
We can even build the breadth-first search tree, which
shows how the graph was explored and tells you the
shortest path to all nodes



Tree graphs

● A tree, seen as a special case of a graph, is a
acyclic, connected graph.

● A rooted tree corresponds to a normal tree. A
rooted tree is a tree where one node is
identified as the root.

● What’s the relation between the number of
verteces and edges in a tree?
|V|=|E|+1



Dijkstra's algorithm
Prim's algorithm



Weighted graphs

In a weighted graph, each edge is labelled with a
weight, a number:

The weight typically represents the “cost” of
following the edge



The (weighted) shortest path problem

Find the path with least total weight from point A to
point B in a weighted graph
(If there are no weights:
can be solved with BFS)
Useful in e.g.,
route planning,
network routing
Most common approach:
Dijkstra's algorithm,
which works when all
edges have positive weight



Dijkstra's algorithm

Dijkstra's algorithm computes
the distance from a start
node to all other nodes
It visits the nodes of the
graph in order of distance
from the start node,
and remembers their
distance
We first visit the start
node, which has distance 0

A

C

E

G

F

D

15

53
40

46

3
31

17
29

40

8
11

B



Dijkstra's algorithm

At each step we visit the closest
node that we haven't visited yet
This node must be
adjacent to a node we
have visited (why?)
By looking at the
outgoing edges from
the visited nodes, we can
find the closest
unvisited node
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Dijkstra's algorithm

For each node x we've visited,
and each edge x → y, where
y is unvisited:
● Add the distance to x and

the weight of the edge x → y

Whichever node y has
the shortest total
distance, visit it!
● This is the closest

unvisited node

Repeat until there are no
edges to unvisited nodes
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Dijkstra's algorithm

Visited nodes:
A distance 0
Neighbours of A
are B (distance 15),
C (distance 53)
So visit B
(distance 15)
(Red = visited node,
yellow = neighbour of
visited node)
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Dijkstra's algorithm

Visited nodes:
A distance 0
B distance 15
Neighbours are:
● D (distance

15 + 46 = 61)
● C (distance 53 –

also via B
15 + 40 = 55)

So visit C (distance 53)
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Dijkstra's algorithm

Visited nodes:
A distance 0
B distance 15
C distance 53
Neighbours are:
● D (distance

15 + 46 = 61)
● E (distance

53 + 31 = 84)
● G (distance

53 + 17 = 70)

So visit D (distance 61)
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Dijkstra's algorithm

Visited nodes:
A distance 0
B distance 15
C distance 53
D distance 61
Neighbours are:
● E (distance

61 + 3 = 64,
also via C 55 + 29 = 84)

● G (distance 53 + 17 = 70)
● F (distance 61 + 11 = 72)

So visit E (distance 64)
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Dijkstra's algorithm

Visited nodes:
A distance 0
B distance 15
C distance 53
D distance 61
E distance 64
Neighbours are:
● G (distance 53 + 17 = 70,

also via E 64 + 29 = 93)
● F (distance 61 + 11 = 72,

also via E 64 + 8 = 72)

So visit G (distance 70)
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Dijkstra's algorithm

Visited nodes:
A distance 0
B distance 15
C distance 53
D distance 61
E distance 64
G distance 70
Neighbours are:
● F (distance 61 + 11 = 72,

also via E 64 + 8 = 72,
also via G 70 + 40 = 110)

So visit F (distance 72)
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Dijkstra's algorithm

Visited nodes:
A distance 0
B distance 15
C distance 53
D distance 61
E distance 64
G distance 70
F distance 72
Finished!
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Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take F
Idea: work out which edge
we should take on the
final leg of the journey
A → 0,
B → 15,
C → 53,
D → 61,
E → 64,
G → 70,
F → 72
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Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take F
Idea: work out which edge
we should take on the
final leg of the journey
A → 0,
B → 15,
C → 53,
D → 61,
E → 64,
G → 70,
F → 72
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To arrive at F, we
must take the edge from

D, E or G



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take F
Idea: work out which edge
we should take on the
final leg of the journey
A → 0,
B → 15,
C → 53,
D → 61,
E → 64,
G → 70,
F → 72

A
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B

A → G: 70
G → F edge: 40

So coming via this edge: 110
A → F: 72

This route won't work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take F
Idea: work out which edge
we should take on the
final leg of the journey
A → 0,
B → 15,
C → 53,
D → 61,
E → 64,
G → 70,
F → 72

A
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G

F

D

15
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B

A → E: 64
E → F edge: 8

So coming via this edge: 72
A → F: 72

This route will work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take F
Idea: work out which edge
we should take on the
final leg of the journey
A → 0,
B → 15,
C → 53,
D → 61,
E → 64,
G → 70,
F → 72
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Now we know we can come
via E – so just repeat

the process to work out
how to get to E!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take F
Idea: work out which edge
we should take on the
final leg of the journey
A → 0,
B → 15,
C → 53,
D → 61,
E → 64,
G → 70,
F → 72

A
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A → C: 53
C→ E edge: 31

So coming via this edge: 84
A → E: 64

This route won't work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take F
Idea: work out which edge
we should take on the
final leg of the journey
A → 0,
B → 15,
C → 53,
D → 61,
E → 64,
G → 70,
F → 72

A
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A → D: 61
D → E edge: 3

So coming via this edge: 64
A → E: 64

This route will work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take F
Idea: work out which edge
we should take on the
final leg of the journey
A → 0,
B → 15,
C → 53,
D → 61,
E → 64,
G → 70,
F → 72
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Repeat the process
for D



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take F
Idea: work out which edge
we should take on the
final leg of the journey
A → 0,
B → 15,
C → 53,
D → 61,
E → 64,
G → 70,
F → 72

A
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B

A → B: 15
B → D edge: 46

So coming via this edge: 61
A → D: 61

This route will work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take F
Idea: work out which edge
we should take on the
final leg of the journey
A → 0,
B → 15,
C → 53,
D → 61,
E → 64,
G → 70,
F → 72
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Repeat the process
for B



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take F
Idea: work out which edge
we should take on the
final leg of the journey
A → 0,
B → 15,
C → 53,
D → 61,
E → 64,
G → 70,
F → 72

A
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A → C: 53
C → B edge: 40

So coming via this edge: 93
A → B: 15

This route won't work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take F
Idea: work out which edge
we should take on the
final leg of the journey
A → 0,
B → 15,
C → 53,
D → 61,
E → 64,
G → 70,
F → 72

A

C

E

G

F

D

15

53
40

46

3
31

17
29

40

8
11

B

A → A: 0
A → B edge: 15

So coming via this edge: 15
A → B: 15

This route will work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take F
Idea: work out which edge
we should take on the
final leg of the journey
A → 0,
B → 15,
C → 53,
D → 61,
E → 64,
G → 70,
F → 72
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Now we have found our
way back to the start node
and have the shortest path!



Dijkstra's algorithm

Formally, we maintain a set S, which contains all visited
nodes and their distances (really a map)
Let S = {start node → 0}
While not all nodes are in S,
● For each node x  in S, and each neighbour y of x, calculate

d = distance to x + cost of edge from x to y
● Find the node y which has the smallest value for d
● Add that y and its distance d to S

This computes the shortest distance to each node, from
which we can reconstruct the shortest path to any node
What is the efficiency of this algorithm?



Dijkstra's algorithm

Formally, we maintain a set S, which contains all visited
nodes and their distances (really a map)
Let S = {start node → 0}
While not all nodes are in S,
● For each node x  in S, and each neighbour y of x, calculate

d = distance to x + cost of edge from x to y
● Find the node y which has the smallest value for d
● Add that y and its distance d to S

This computes the shortest distance to each node, from
which we can reconstruct the shortest path to any node
What is the efficiency of this algorithm?

We add one node
to S each time

through the loop –
loop runs |V| times

Each time through the
outer loop, we loop

through all edges in S,
which by the end

contains |E| edges

Total:
O(|V| × |E|)!



Dijkstra's algorithm, made efficient

The algorithm so far is O(|V| × |E|)
This is because this step:
● For all nodes adjacent to a node in S, calculate their

distance from the start node, and pick the closest one

takes O(|E|) time, and we execute it once for
every node in the graph
How can we make this faster?



Dijkstra's algorithm, made efficient

Answer: use a priority queue!
To find the closest unvisited node, we store all neighbours 
of visited nodes in a priority queue, together with their
distances
Instead of searching for the nearest unvisited node, we
can just ask the priority queue for the node with the
smallest distance
Whenever we visit a node, we will add each of its
unvisited neighbours to the priority queue
We can also store the previous node. This allows us to
calculating the shortest path by following the references
backwards to the start node.



Dijkstra's algorithm

S = {}
Q = {A 0 -},
The distance to A itself
is 0 and it has no
predecessor.
Remove the smallest
element of Q,
“A 0 -”.
Add it to S,
and add A's
neighbours to Q.
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Dijkstra's algorithm

S = {A 0 -}
Q = {B 15 A,
          C 53 A}
Remove the smallest
element of Q,
“B 15 A”.
Add it
to S, and add B's
neighbours to Q.
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Dijkstra's algorithm

S = {A 0 -,
         B 15 A}
Q = {C 53 A,
          D 61 B,
          C 55 B}
Remove the smallest
element of Q,
“C 53 A”.
Add it to S,
and add C's
neighbours to Q.
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Dijkstra's algorithm

S = {A 0 -,
         B 15 A,
         C 53 A}
Q = {D 61 B,
          C 55 B,
          E 84 C,
          G 70 C}
Remove the smallest
element of Q,
“C 55 B”.
Oh! C is already in S.
So just ignore it.
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Dijkstra's algorithm

S = {A 0 -,
         B 15 A,
         C 53 A}

Q = {D 61 B,
          E 84 C,
          G 70 C}
Remove the smallest
element of Q,
“D 61 B”.
Add it to S,
and add D's
neighbours to Q.
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Dijkstra's algorithm

S = {A 0 -,
         B 15 A,
         C 53 A,
         D 61 B}

Q = {E 84 C,
          G 70 C,
          E 64 D,
          F 72 D}
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Dijkstra's algorithm

S = {A 0 -,
         B 15 A,
         C 53 A,
         D 61 B,
         E 64 D}

Q = {E 84 C,
          G 70 C,
          F 72 D,
          F 72 E,
          G 93 E}
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Dijkstra's algorithm

S = {A 0 -,
         B 15 A,
         C 53 A,
         D 61 B,
         E 64 D,
         G 70 C}

Q = {E 84 C,
          F 72 D,
          F 72 E,
          G 93 E,
          F 110 G}
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Dijkstra's algorithm

S = {A 0 -,
         B 15 A,
         C 53 A,
         D 61 B,
         E 64 D,
         G 70 C,
         F 72 D}

Q = {E 84 C,
          F 72 E,
          G 93 E,
          F 110 G}
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Dijkstra's algorithm

S = {A 0 -,
         B 15 A,
         C 53 A,
         D 61 B,
         E 64 D,
         G 70 C,
         F 72 D}

Q = {E 84 C,
          G 93 E,
          F 110 G}
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Dijkstra's algorithm

S = {A 0 -,
         B 15 A,
         C 53 A,
         D 61 B,
         E 64 D,
         G 70 C,
         F 72 D}

Q = {G 93 E,
          F 110 G}
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Dijkstra's algorithm

S = {A 0 -,
         B 15 A,
         C 53 A,
         D 61 B,
         E 64 D,
         G 70 C,
         F 72 D}

Q = {F 110 G}
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Dijkstra's algorithm

S = {A 0 -,
         B 15 A,
         C 53 A,
         D 61 B,
         E 64 D,
         G 70 C,
         F 72 D}

Q = {}

To get to e.g. to F we
follow the backwards
references: F<-D, D<-B, B<-A
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Dijkstra's algorithm, efficiently

Let S = {} and Q = {start node → 0}
While Q is not empty:

– Remove the entry (x d z) from Q that has the smallest priority
(distance) d. z is the node’s predecessor.

– If x is in S, do nothing
– Otherwise, add (x d z) to S and for each outgoing edge x → y, add (y 

(d + w) x) to Q, where w is the weight of the edge

● The time complexity is
O(|E|log|E|)

The whole loop is repeated
at most |E| times.

The size of the pq is at
most |E| so this takes

O(log|E|)

This is repeated at most
|E| times in total

(i.e. for all iterations
of the outer loop.)

Each iteration is O(log |E|)



Minimum spanning trees

A spanning tree of a graph
is a subgraph (a graph
obtained by deleting
some of the edges) which:
● is acyclic
● is connected

A minimum spanning
tree is one where the
total weight of the edges
is as low as possible
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Minimum spanning trees
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Prim's algorithm

We will build a minimum spanning tree by
starting with no edges and adding edges
until the graph is connected
Keep a set S of all the nodes that are in the
tree so far, initially containing one arbitrary
node
While there is a node not in S:
● Pick the lowest-weight edge between a node in S and a

node not in S
● Add that edge to the spanning tree, and add the node

to S



Minimum spanning treesS = {D}
Lowest-weight edge

from S to not-S
is D → E

A

C

E

G

F

D

15

53
40

46

3
31

17
29

40

8
11

B

A

C

E

G

F

D

B



Minimum spanning treesS = {D, E}
Lowest-weight edge

from S to not-S
is E → F
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Minimum spanning trees
S = {D, E,

F}
Lowest-weight edge

from S to not-S
is E → G
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Minimum spanning trees
S = {D, E,

F, G}
Lowest-weight edge

from S to not-S
is G → C
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Minimum spanning trees
S = {D, E,

F, G,
C}

Lowest-weight edge
from S to not-S

is C → B
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Minimum spanning trees
S = {D, E,

F, G,
C, B}

Lowest-weight edge
from S to not-S

is B → A
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Minimum spanning trees
Notice:

we get a minimum
spanning tree

whatever node we start at!
For this graph,

because there is only one
minimum spanning tree,
we always get that one.
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Prim's algorithm, efficiently

The operation
● Pick the lowest-weight edge between a node in S and a node not in S

takes O(|E|) time if we're not careful! Then Prim's
algorithm will be O(|V||E|)
To implement Prim's algorithm, use a priority queue
containing all edges between S and not-S
● Whenever you add a node to S, add all of its edges to nodes in not-S to

a priority queue
● To find the lowest-weight edge, just find the minimum element of the

priority queue
● Just like in Dijkstra's algorithm, the priority queue might return an

edge between two elements that are now in S: ignore it

New time: O(|E| log |E|)



Summary

Breadth-first search – finding shortest paths in unweighted graphs, using
a queue
Dijkstra's algorithm – finding shortest paths in weighted graphs – some
extensions for those interested:
● Bellman-Ford: works when weights are negative
● A* – faster – tries to move towards the target node, where Dijkstra's algorithm explores

equally in all directions

Prim's algorithm – finding minimum spanning trees. If you’re interested:
● Kruskal’s algorithm finds minimum spanning forests (sets of trees) for unconnected

graphs.

Both are greedy algorithms – they repeatedly find the “best” next element
● Common style of algorithm design

Both use a priority queue to get O(n log n)
● Dijkstra's algorithm is sort of BFS but using a priority queue instead of a queue

Many many many more graph algorithms
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