

Introduction,
dynamic arrays

A simple problem

Suppose we want to write a program that
reads a file, and then outputs it, twice

Idea: read the file into a string
String result = ””;
Character c = readChar();
while(c != null) {
 result += c;
 c = readChar();
}
System.out.print(result);
System.out.print(result);

A simple problem

Suppose we want to write a program that
reads a file, and then outputs it, twice

Idea: read the file into a string
String result = “”;
Character c = readChar();
while(c != null) {
 result += c;
 c = readChar();
}
System.out.print(result);
System.out.print(result);

This program is
amazingly slow!

The right way to solve it?

Use a StringBuilder instead
StringBuilder result =
 new StringBuilder();
Character c = readChar();
while(c != null) {
 result.append(c);
 c = readChar();
}
System.out.print(result);
System.out.print(result);

...but: why is there a difference?

Behind the scenes

A string is basically an array of characters

● String s = ”hello” ↔
char[] s = {'h','e','l','l','o'}

This little line of code...
result = result + c;

is:
● Creating a new array one character longer than before
● Copying the original string into the array, one character at a

time
● Storing the new character at the end

(See CopyNaive.java)

w o r d + s

w o r d s

1. Make a new array

w o r d

2. Copy the old array there

3. Add the new element

Well, is it really so bad?

Appending a single character to an string of length i
needs to copy i characters

Imagine we are reading a file of length n

● ...we append a character n times
● ...the string starts off at length 0, finishes at length n

● ...so average length throughout is n/2

● total: n × n/2 = n2/2 characters copied

For “War and Peace”, n = 3200000

so 1600000 × 3200000 = 5,120,000,000,000
characters copied!

No wonder it's slow!

Improving it (take 1)

It's a bit silly to copy the whole array every
time we append a character

Idea: add some slack to the array
● Whenever the array gets full, make a new array that's

(say) 100 characters bigger
● Then we can add another 99 characters before we

need to copy anything!
● Implementation: array+variable giving size of currently

used part of array

(See Copy100.java)

h e l l o w o r l

h e l l o w o r l

d

Add an element:

h e l l o w o r l

d !

Add an element:

Improving it (take 1)

Does this idea help?

We will avoid copying the array 99 appends
out of 100

In other words, we will copy the array
1/100th as often...

...so instead of copying
5,120,000,000,000 characters, we will
copy only 51,200,000,000!
(Oh. That's still not so good.)

Improving it (take 2)

Another idea: whenever the array gets
full, double its size

That way, we need to copy the array
less and less often as it gets bigger

Does this work?

Improving it (take 2)

Let's calculate how many characters are copied per
character appended to the string
● Imagine we have just expanded the array
● It must have size 2n and contain n+1 characters
● The next n-1 appends don't copy anything
● The next append after that copies 2n characters
● n characters appended, 2n characters copied: average of 2

characters copied per append

For “War and Peace”, we copy ~6,400,000
characters. A million times less than the first
version!

Performance – a graph

Zoom in!

Zoom in!

A huge effect from
a small change!

Why does it work really?

The important property:
● After resizing the array, the new array is no

more than half full
● For every “expensive” step of copying 2n

characters, there are n “cheap” steps with no
copying => constant cost of 2 characters
copied per step

Also works if we e.g. increase array
size by 50% instead of doubling!

Dynamic arrays

A dynamic array is like an array, but can be resized –
very useful data structure:
● E get(int i);

● void set(int i, E e);

● void add(E e);

Implementation is just as in our file-reading example:
● An array
● A variable storing the size of the used part of the array
● add copies the array when it gets full, but doubles the size of the

array each time

Called ArrayList in Java

About strings and StringBuilder

String: array of characters
● Fixed size
● Immutable (can't modify once created)

StringBuilder: dynamic array of
characters
● Can be resized and modified efficiently

So what is a data structure anyway?

Vague answer: any way of organising the
data in your program

A data structure always supports a
particular set of operations:
● Arrays: get(a[i]), set(a[i]=x), create (new
int[10])

● Dynamic arrays: same as arrays plus add/remove
● Haskell lists: cons, head, tail
● Many, many more...

Prefix tree – return
all strings starting
with a particular

sequence

Interface vs implementation

As a user, you are mostly interested in
what operations the data structure
supports, not how it works

Terminology:
● The set of operations is an abstract data type (ADT)

● The data structure implements the ADT
● Example: map is an ADT which can be

implemented by a binary search tree, a 2-3 tree, a
hash table, … (we will come across all these later)

Interface vs implementation

Why study how data structures work inside?
Can't we just use them?
● As computer scientists, you ought to understand how

things work inside
● In order to choose the most suitable existing

implementation of an ADT you need to known how they
work to some extent.

● Sometimes you need to adapt an existing data
structure, which you can only do if you understand it

● The best way to learn how to design your own data
structures is to study lots of existing ones

This course

● How to design and implement data
structures

● How to reason about them
● How to use them and pick the right

one

Big points

“Brute force” programming works up to a point
● After that you need to think!
● Using the right data structures makes your program

simpler and faster

Most data structures are based on some
simple idea

Reasoning helps to get things right
● Dynamic arrays work because the array is always half

empty after resizing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

