Lecture
 Models of Computation (DIT310, TDA184)

Nils Anders Danielsson

2017-11-27

Today

- Rice's theorem.
- Turing machines.

Correction

Last week:

- How do we represent a χ-computable function?
- Example:

$$
\{f \in \mathbb{N} \rightarrow \mathbb{N} \mid f \text { is } \chi \text {-computable }\}
$$

- By the representation of one of the closed expressions witnessing the computability of the function.

Correction

However, I want to allow any witness.

- Implementations of functions in

$$
\{f \in \mathbb{N} \rightarrow \mathbb{N} \mid f \text { is } \chi \text {-computable }\} \rightarrow \text { Bool }
$$

are only required to function correctly for one particular witness of a given f.

Correction

Note that

$$
\{f \in \mathbb{N} \rightarrow \mathbb{N} \mid f \text { is } \chi \text {-computable }\}
$$

is equivalent to

$$
\{f \in \mathbb{N} \rightarrow \mathbb{N} \mid e \in C E x p, e \text { implements } f\}
$$

Replace it with
$\{(f, e) \mid f \in \mathbb{N} \rightarrow \mathbb{N}, e \in C E x p, e$ implements $f\}$,
and define $\ulcorner(f, e)\urcorner=\ulcorner e\urcorner$.

$$
\begin{aligned}
& \text { Rice's } \\
& \text { theorem }
\end{aligned}
$$

Rice's theorem

Assume that $P \in C E x p \rightarrow$ Bool satisfies the following properties:

- P is non-trivial:

There are expressions $e_{\text {true }}, e_{\text {false }} \in C E x p$ satisfying $P e_{\text {true }}=$ true and $P e_{\text {false }}=$ false.

- P respects pointwise semantic equality:

$$
\begin{aligned}
& \forall e_{1}, e_{2} \in C E x p . \\
& \text { if } \forall e \in C E x p . \llbracket e_{1} e \rrbracket=\llbracket e_{2} e \rrbracket \text { then } \\
& \quad P e_{1}=P e_{2}
\end{aligned}
$$

Then P is χ-undecidable.

Rice's theorem

The halting problem reduces to P :

$$
\begin{aligned}
& \text { halts }=\lambda e . \text { case } P\left\ulcorner\lambda_{-} \text {. rec } x=x\right\urcorner \text { of } \\
& \quad\{\text { False }() \rightarrow \\
& \quad P\left\ulcorner\lambda x .\left(\lambda_{-} . e_{\text {true }} x\right)\left(\text { eval }_{\llcorner } \text {code } e_{\lrcorner}\right)\right\urcorner
\end{aligned}
$$

; True() \rightarrow

$$
\operatorname{not}\left(P\left\ulcorner\lambda x .\left(\lambda_{-} . e_{\text {false }} x\right)\left(e v a l_{\llcorner } \operatorname{code} e_{\lrcorner}\right)\right\urcorner\right)
$$

$$
\}
$$

Quiz

Which of the following problems are χ-decidable?

- Is $e \in C E x p$ an implementation of the successor function for natural numbers?
- Is $e \in C E x p$ syntactically equal to λn. $\operatorname{Suc}(n)$?

Turing machines

Intuitive idea

- A tape that extends arbitrarily far to the right.
- The tape is divided into squares.
- The squares can contain symbols, chosen from a finite alphabet.
- A read/write head, positioned over one square.
- The head can move from one square to an adjacent one.
- Rules that explain what the head does.

Rules

- A finite set of states.
- When the head reads a symbol
(blank squares correspond to a special symbol):
- Check if the current state contains a matching rule, with:
- A symbol to write.
- A direction to move in.
- A state to switch to.
- If not, halt.

Motivation

- Turing motivated his design partly by reference to what a human computer does.
- Please read his text.

$$
\begin{gathered}
\text { Abstract } \\
\text { syntax }
\end{gathered}
$$

Abstract syntax

A Turing machine (one variant) is specified by giving the following information:

- S : A finite set of states.
- $s_{0} \in S$: An initial state.
- Σ : The input alphabet, a finite set of symbols with $\sqcup \notin \Sigma$.
- Γ : The tape alphabet, a finite set of symbols with $\Sigma \cup\{\sqcup\} \subseteq \Gamma$.
- $\delta \in S \times \Gamma \rightharpoonup S \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}:$

The transition "function".

Abstract syntax

S is a finite set $\quad s_{0} \in S$
Σ is a finite set $\quad \sqcup \notin \Sigma$
Γ is a finite set $\quad \Sigma \cup\{\sqcup\} \subseteq \Gamma$

$$
\frac{\delta \in S \times \Gamma \rightharpoonup S \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}}{\left(S, s_{0}, \Sigma, \Gamma, \delta\right) \in T M}
$$

semantics

Positioned tapes

- Representation of the tape and the head's position:

$$
\text { Tape }=\text { List } \Gamma \times \text { List } \Gamma
$$

- Here ($l s, r s$) stands for

$$
\text { reverse } l s+r s
$$

followed by an infinite sequence of blanks (\sqcup).

Positioned tapes

$([2,1],[3,4, \sqcup, \sqcup])$ stands for:
Head

The symbol under the head

The head is located over the first symbol in rs (or a blank, if $r s$ is empty):

$$
\begin{aligned}
& \text { head }_{T} \in \text { Tape } \rightarrow \Gamma \\
& \text { head }_{T}(l s, r s)=\text { head rs }
\end{aligned}
$$

$$
\text { head } \in \operatorname{List} \Gamma \rightarrow \Gamma
$$

$$
\text { head [] } \quad=\sqcup
$$

$$
\text { head }(x:: x s)=x
$$

Writing

Writing to the tape:

$$
\begin{aligned}
& \text { write } \in \Gamma \rightarrow \text { Tape } \rightarrow \text { Tape } \\
& \text { write } x(l s, r s)=(l s, x:: \text { tail rs })
\end{aligned}
$$

The "tail" of a sequence:

$$
\begin{aligned}
& \text { tail } \in \text { List } \Gamma \rightarrow \text { List } \Gamma \\
& \text { tail }[]=[] \\
& \text { tail }(r:: r s)=r s
\end{aligned}
$$

Moving

Moving the head:

$$
\begin{aligned}
\text { move } \in\{\mathrm{L}, \mathrm{R}\} & \rightarrow \text { Tape } \rightarrow \text { Tape } \\
\text { move } \mathrm{R}(l s, r s) & =(\text { head rs }:: l \text { ls, tail rs }) \\
\text { move } \mathrm{L}([], r s) & =([] \quad, r s) \\
\text { move } \mathrm{L}(l s, r s) & =(\text { tail } l s \quad, \text { head } l s:: r s)
\end{aligned}
$$

Actions

Actions describe what the head will do:

$$
\text { Action }=\Gamma \times\{\mathrm{L}, \mathrm{R}\}
$$

Note:

$$
\delta \in S \times \Gamma \rightharpoonup S \times \text { Action }
$$

First write, then move:

$$
\begin{aligned}
& \text { act } \in \text { Action } \rightarrow \text { Tape } \rightarrow \text { Tape } \\
& \text { act }(x, d) t=\text { move } d(\text { write } x t)
\end{aligned}
$$

Quiz

Which of the following equalities are valid?

- $\operatorname{act}(0, \mathrm{~L})(\operatorname{act}(1, \mathrm{~L})([],[]))=([],[0,1])$
- $\operatorname{act}(0, \mathrm{~L})(\operatorname{act}(1, \mathrm{~L})([],[]))=([0,1],[])$
- $\operatorname{act}(0, \mathrm{~L})(\operatorname{act}(1, \mathrm{~L})([],[]))=([1,0],[])$
- $\operatorname{act}(0, \mathrm{R})(\operatorname{act}(1, \mathrm{R})([],[]))=([],[0,1])$
- $\operatorname{act}(0, \mathrm{R})(\operatorname{act}(1, \mathrm{R})([],[]))=([0,1],[])$
- $\operatorname{act}(0, \mathrm{R})(\operatorname{act}(1, \mathrm{R})([],[]))=([1,0],[])$

Small-step operational semantics

A configuration consists of a state and a tape:

$$
\text { Configuration }=\text { State } \times \text { Tape }
$$

The small-step operational semantics relates configurations:

$$
\frac{\delta\left(s, \text { head }_{T} t\right)=\left(s^{\prime}, a\right)}{(s, t) \longrightarrow\left(s^{\prime}, \text { act a } t\right)}
$$

Reflexive transitive closure

Zero or more small steps:

The machine halts if it ends up in a configuration c for which there is no c^{\prime} such that $c \longrightarrow c^{\prime}$.

The machine's result

- The machine is started in state s_{0}.
- The head is initially over the left-most square.
- The tape initially contains a string of characters from the input alphabet Σ (followed by blanks).
- If the machine halts, then the result consists of the contents of the tape, up to the last non-blank symbol.
- (Last year I required the machine to halt with the head over the left-most square.)

The machine's result

A relation between List Σ and List Γ :

$$
\frac{\left(s_{0},[], x s\right) \longrightarrow^{\star}(s, t) \quad \nexists c .(s, t) \longrightarrow c}{x s \Downarrow \text { remove }(\text { list } t)}
$$

Constructing the result

The function list converts the representation of the tape to a list, and remove removes all trailing blanks:

$$
\begin{aligned}
& \text { list } \in \text { Tape } \rightarrow \text { List } \Gamma \\
& \text { list }(\text { ls, rs })=\text { reverse ls }+r s \\
& \text { remove } \in \text { List } \Gamma \rightarrow \text { List } \Gamma \\
& \text { remove }[] \quad=[] \\
& \text { remove }(x:: x s)=\text { cons }^{\prime} x(\text { remove } x s) \\
& \text { cons }^{\prime} \in \Gamma \rightarrow \text { List } \Gamma \rightarrow \text { List } \Gamma \\
& \text { cons }^{\prime} \sqcup[]=[] \\
& \text { cons }^{\prime} x x s=x:: x s
\end{aligned}
$$

Quiz

Which properties does \Downarrow satisfy?

- Is it deterministic (for every Turing machine)?

$$
\begin{gathered}
\forall x s \in \text { List } \Sigma . \forall y s, z s \in \text { List } \Gamma . \\
x s \Downarrow y s \wedge x s \Downarrow z s \Rightarrow y s=z s
\end{gathered}
$$

- Is it total (for every Turing machine)?

$$
\forall x s \in \operatorname{List} \Sigma . \exists y s \in \operatorname{List} \Gamma . x s \Downarrow y s
$$

The machine's partial function

The semantics as a partial function:

$$
\begin{aligned}
& \llbracket-\rrbracket \in \forall t m \in \text { TM. List } \Sigma_{t m} \rightharpoonup \text { List } \Gamma_{t m} \\
& \llbracket t m \rrbracket x s=y s \text { if } x s \Downarrow_{t m} y s
\end{aligned}
$$

Two
 examples

An example

- Input alphabet: $\{0,1\}$.
- Tape alphabet: $\{0,1, \sqcup\}$.
- States: $\left\{s_{0}\right\}$.
- Initial state: s_{0}.

Transition function

$$
\begin{aligned}
& \delta\left(s_{0}, 0\right)=\left(s_{0}, 1, \mathrm{R}\right) \\
& \delta\left(s_{0}, 1\right)=\left(s_{0}, 0, \mathrm{R}\right)
\end{aligned}
$$

Quiz

What is the result of running this TM with 0101 as the input string?

- No result
- 0000
- 1111
- 0101
- 1010
- 0101
- 1010

Another example

One way to make sure that the head ends up over the left-most square:

- Input alphabet: $\{0,1\}$.
- Tape alphabet: $\{0,1, \underline{0}, \underline{1}, \sqcup\}$.
- States: $\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$.
- Initial state: s_{0}.

Transition function

Accepting
states

Accepting states

Turing machines with accepting states:
S is a finite set $\quad s_{0} \in S \quad A \subseteq S$ Σ is a finite set $\quad \sqcup \notin \Sigma$
Γ is a finite set $\Sigma \cup\{\sqcup\} \subseteq \Gamma$ $\delta \in S \times \Gamma \rightharpoonup S \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$
$\left(S, s_{0}, A, \Sigma, \Gamma, \delta\right) \in T M$

Is the string accepted?

A relation on List Σ :

$$
\frac{\left(s_{0},[], x s\right) \longrightarrow \longrightarrow^{\star}(s, t) \quad \nexists c \cdot(s, t) \longrightarrow c}{s \in A} \text { Accept xs}
$$

Is the string rejected?

A relation on List Σ :

$$
\frac{\begin{array}{c}
\left(s_{0},[], x s\right) \longrightarrow \longrightarrow^{\star}(s, t) \quad \nexists c \cdot(s, t) \longrightarrow c \\
s \notin A
\end{array}}{\text { Reject } x s}
$$

Note that if the TM fails to halt, then the string is neither accepted nor rejected.

An example

- Input alphabet: $\{1\}$.
- Tape alphabet: $\{1, \sqcup\}$.
- States: $\left\{s_{0}, s_{1}\right\}$.
- Initial state: s_{0}.
- Accepting states: $\left\{s_{0}\right\}$.

Transition function

Transition function

- Quiz: Which strings are accepted by this Turing machine?

Variants

Variants

Equivalent (in some sense) variants:

- Possibility to stay put.
- A tape without a left end.
- Multiple tapes.
- Only two symbols, other than the blank one.

Representing
 inductively
 defined sets

Natural numbers

One method:

$$
\begin{aligned}
& \ulcorner-\urcorner \in \mathbb{N} \rightarrow \text { List }\{1\} \\
& \ulcorner\text { zero }\urcorner=[] \\
& \ulcorner\text { suc } n\urcorner=1::\ulcorner n\urcorner
\end{aligned}
$$

Natural numbers

Another method:

$$
\begin{aligned}
& \ulcorner-\urcorner \in \mathbb{N} \rightarrow \operatorname{List}\{0,1\} \\
& \ulcorner\text { zero }\urcorner=0::[] \\
& \ulcorner\text { suc } n\urcorner=1::\ulcorner n\urcorner
\end{aligned}
$$

This method is used below.

Lists

Assume that members of A can be represented using a function ${ }^{\ulcorner }{ }^{-}{ }^{\urcorner} \in A \rightarrow$ List Σ that is splittable:

- It is injective.
- There is a function

$$
\text { split } \in \text { List } \Sigma \rightarrow \text { List } \Sigma \times \text { List } \Sigma
$$

such that, for any $x \in A, x s \in \operatorname{List} \Sigma$,

$$
\text { split }(\ulcorner x\urcorner+x s)=(\ulcorner x\urcorner, x s) \text {. }
$$

Lists

Assume that members of A can be represented using a function ${ }^{\ulcorner }{ }^{-}{ }^{\urcorner} \in A \rightarrow$ List Σ that is splittable:

- It is injective.
- There is a function

$$
\text { split } \in \text { List } \Sigma \rightarrow \text { List } \Sigma \times \text { List } \Sigma
$$

such that, for any $x \in A, x s \in$ List Σ,

$$
\text { split }(\ulcorner x\urcorner+x s)=(\ulcorner x\urcorner, x s) \text {. }
$$

Note that split can only be defined for one of the presented methods for representing natural numbers.

Lists

Representation of List A :

$$
\begin{aligned}
& \left\ulcorner _\right\urcorner \in \operatorname{List} A \rightarrow \operatorname{List}(\Sigma \cup\{0,1\}) \\
& \ulcorner[]\urcorner\urcorner=0::[] \\
& \ulcorner x:: x s\urcorner=1::\ulcorner x\urcorner+\ulcorner x s\urcorner
\end{aligned}
$$

This function is splittable.

Quiz

Which list of natural numbers does 11110101110100 stand for?

- None
- $[3,0,2]$
- $[3,0,2,0]$
- $[3,2,0]$
- $[4,1,3,1]$
- $[4,1,3,1,0]$

Pairs

Assume that members of A and B can be represented using functions ${ }^{\ulcorner }{ }_{-}{ }^{\urcorner} \in A \rightarrow$ List Σ and ${ }^{\ulcorner }{ }_{-}{ }^{\urcorner B} \in B \rightarrow$ List Σ that are splittable.

Representation of $A \times B$:

$$
\begin{aligned}
& \ulcorner\quad\urcorner \in A \times B \rightarrow \text { List } \Sigma \\
& \ulcorner(x, y)\urcorner=\ulcorner x\urcorner A+\ulcorner y\urcorner B
\end{aligned}
$$

This function is also splittable.

Turing-

computability

Turing-computable functions

Assume that we have methods for representing members of the sets A and B as elements of List Σ, where Σ is a finite set.

A partial function $f \in A \rightharpoonup B$ is Turing-computable (with respect to these methods) if there is a Turing machine $t m$ such that:

- $\Sigma_{t m}=\Sigma$.
- $\forall a \in A . \llbracket t m \rrbracket\ulcorner a\urcorner=\ulcorner f a\urcorner$.

Languages

- A language over an alphabet Σ is a subset of List Σ.

Turing-decidable

A language L over Σ is Turing-decidable if there is a Turing machine $t m$ such that:

- $\Sigma_{t m}=\Sigma$.
- $\forall x s \in$ List Σ. if $x s \in L$ then Accept $_{t m} x s$.
- $\forall x s \in$ List Σ. if $x s \notin L$ then Reject ${ }_{t m} x s$.

Turing-recognisable

A language L over Σ is Turing-recognisable if there is a Turing machine $t m$ such that:

- $\Sigma_{t m}=\Sigma$.
- $\forall x s \in$ List $\Sigma . x s \in L$ iff Accept $_{t m} x s$.

Summary

- Rice's theorem.
- Turing machines:
- Abstract syntax.
- Operational semantics.
- Variants.
- Representing inductively defined sets.
- Turing-computability.

