
Lecture
Models of Computation

(DIT310, TDA184)

Nils Anders Danielsson

2017-12-04



Today

▶ Representing Turing machines.
▶ A self-interpreter (a universal Turing machine).
▶ The halting problem.
▶ A Turing machine that is a 𝜒 interpreter.
▶ The Post correspondence problem.



Representing
Turing

machines



States

Assume that S = {s0, …, s𝑛}.
Note that S is always non-empty.

⌜ S ⌝ = ⌜ n ⌝
⌜ s𝑘 ⌝ = ⌜ k ⌝



Alphabets

Assume that Σ = {c1, …, c𝑚} and
Γ = {␣} ∪ {c1, …, c𝑚+𝑛}.

⌜ Σ ⌝ = ⌜m ⌝
⌜ Γ ⌝ = ⌜ n ⌝
⌜ ␣ ⌝ = ⌜ 0 ⌝
⌜ c𝑘 ⌝ = ⌜ k ⌝



Directions

⌜ L ⌝ = [0]
⌜R ⌝ = [1]



The transition function

▶ A rule 𝛿 (s, x ) = (s′, x ′, d) is represented by

⌜ s ⌝ ++ ⌜ x ⌝ ++ ⌜ s′ ⌝ ++ ⌜ x ′ ⌝ ++ ⌜ d ⌝.

▶ The transition function is represented by the
representation of a list containing all of its
rules (ordered in some way).



Turing machines and strings

▶ A Turing machine (S , sinitial , Σ, Γ, 𝛿) ∈ TM is
represented by

⌜ S ⌝ ++ ⌜ sinitial ⌝ ++ ⌜ Σ ⌝ ++ ⌜ Γ ⌝ ++ ⌜ 𝛿 ⌝.

▶ A pair consisting of a Turing machine tm and a
corresponding input string xs is represented by

⌜ tm ⌝ ++ ⌜ xs ⌝.

▶ Note that this encoding only uses two
non-blank symbols, 0 and 1.



Quiz

What Turing machine does
001010010011101010110001110101010001
represent?

▶ None
▶ S = {s0}, Σ = {c1}, Γ = {c1, c2, ␣},

𝛿 (s0, c1) = (s0, c1, L)
▶ S = {s0}, Σ = {c1, c2}, Γ = {c1, c2, ␣},

𝛿 (s0, c1) = (s0, c2,R)



Self-
interpreter



Self-interpreter

A self-interpreter or universal Turing machine
eval can simulate arbitrary Turing machines with
arbitrary input:

Σeval = {0, 1}

∀ tm ∈ TM . ∀ xs ∈ List Σtm .
⟦eval ⟧ ⌜ (tm, xs) ⌝ = ⌜ ⟦tm ⟧ xs ⌝



Implementation sketch

Possibly buggy:
▶ Let us use three tapes in the implementation.

Can convert to a one-tape machine later.
▶ Mark the left end of the input tape.
▶ Move the input string to the second tape.

Mark the left end and the head’s position.
▶ Write the initial state to the third tape.

Mark the left end.



Implementation sketch

▶ Simulate the input TM,
using the rules on the first tape.

▶ If the simulation halts,
write the result to the first tape and halt.



The halting
problem



The halting problem

halts ∈ {(tm, xs) ∣ tm ∈ TM , xs ∈ List Σtm } → Bool
halts (tm, xs) =

if ⟦tm ⟧ xs is defined then
true

else
false

This function is not Turing-computable.



The halting problem

The halting problem can also be viewed as a
language:

{⌜ (tm, xs) ⌝ ∣ tm ∈ TM , xs ∈ List Σtm ,
⟦tm ⟧ xs is defined}

This language is Turing-undecidable.

(Note the difference between this definition and the
previous one.)



The halting problem (with self-application)

{⌜ tm ⌝ ∣ tm ∈ TM , ⟦tm ⟧ ⌜ tm ⌝ is defined}

This language is Turing-undecidable. Proof sketch:
▶ Assume that the TM halts decides it.
▶ Define a TM terminv in the following way:

▶ Simulate halts with terminv ’s input.
▶ If halts accepts, loop forever.
▶ If halts rejects, halt.

▶ Note that terminv applied to ⌜ terminv ⌝ halts
iff it does not halt.



The halting problem is undecidable

{⌜ (tm, xs) ⌝ ∣ tm ∈ TM , xs ∈ List Σtm ,
⟦tm ⟧ xs is defined}

Proof sketch:
▶ Assume that the TM halts decides it.
▶ We can then implement a TM for the

halting problem with self-application:
▶ If the input is not ⌜ tm ⌝ for some
tm ∈ TM , reject.

▶ If it is ⌜ tm ⌝, write ??? on the tape.
▶ Run halts .



Quiz

What does ??? stand for?
▶ tm

▶ ⌜ tm ⌝
▶ ⌜ ⌜ tm ⌝ ⌝
▶ tm ++ ⌜ tm ⌝
▶ ⌜ tm ⌝ ++ ⌜ ⌜ tm ⌝ ⌝
▶ tm ++ ⌜ tm ⌝ ++ ⌜ ⌜ tm ⌝ ⌝



Χ interpreter



A 𝜒 interpreter
The 𝜒 semantics is Turing-computable:

▶ Χ programs can be represented as strings in
some finite alphabet Σ:

⌜ ⌝TM ∈ CExp → List Σ

▶ There is a TM chi satisfying the following
properties:

Σchi = Σ

∀ e ∈ CExp. ⟦chi ⟧TM ⌜ e ⌝TM = ⌜ ⟦e ⟧𝜒 ⌝TM



Recursion

▶ How can recursion be implemented?
▶ One idea: An explicit stack on a separate tape.



Implementation sketch

▶ Come up with a small-step semantics for 𝜒.
▶ Use small steps also for substitution.
▶ Make sure that every small step can be

simulated on a TM.
▶ The design can be based on some

abstract machine for the 𝜆-calculus,
perhaps the CEK machine.



Every 𝜒-computable partial function in
ℕ ⇀ ℕ is Turing-computable

Proof sketch:
▶ If f ∈ ℕ ⇀ ℕ is 𝜒-computable, then

∀ m ∈ ℕ. ⟦e ⌜m ⌝𝜒⟧𝜒 = ⌜ f m ⌝𝜒

for some e ∈ CExp.
▶ The following TM implements f :

▶ Convert input: ⌜m ⌝TM ↦ ⌜ e ⌜m ⌝𝜒 ⌝TM.
▶ Simulate the 𝜒 interpreter.
▶ Convert output: ⌜ ⌜ n ⌝𝜒 ⌝TM ↦ ⌜ n ⌝TM.



The Post
correspondence

problem



The Post correspondence problem

Definition (for a set Σ with at least two members):
▶ Given: x1, …, x𝑛 ∈ List Σ × List Σ.
▶ Goal: Find 𝑘 ≥ 1 and 𝑖1, …, 𝑖𝑘 ∈ {1, …, n }

such that

fst x𝑖1
++ ⋯ ++ fst x𝑖𝑘

=
snd x𝑖1

++ ⋯ ++ snd x𝑖𝑘
.

Examples on Wikipedia.

https://en.wikipedia.org/wiki/Post_correspondence_problem


Quiz

Is the Post correspondence problem solvable
for the given pairs of strings?

▶ A: (001, 00), (01, 10).
▶ B: (01, 001), (010, 01).



The Post correspondence problem
▶ Undecidable.
▶ Note that there is no reference to

Turing machines (or 𝜒 expressions)
in the statement of the problem.

▶ Proof idea:
▶ Construct pairs such that a TM halts iff

the problem is solvable.
▶ The resulting string (if any) encodes the

TM’s computation history.
▶ Sipser’s Introduction to the Theory of

Computation (available online via Chalmers’
library) contains a readable proof.



Ambiguity

▶ Undecidable:
Is a context-free grammar ambiguous?

▶ The Post correspondence problem can be
reduced to this one.



Ambiguity
Proof sketch (taken from Sipser):

▶ Given: Pairs (t1, b1), …, (t𝑛, b𝑛).
▶ Define a CFG with three non-terminals, and
Start as the starting non-terminal:
Start ∷= Top ∣ Bottom
Top ∷= t1 Top 1 ∣ … ∣ t𝑛 Top n

∣ t1 1 ∣ … ∣ t𝑛 n
Bottom ∷= b1 Bottom 1 ∣ … ∣ b𝑛 Bottom n

∣ b1 1 ∣ … ∣ b𝑛 n

(Here 1, …, n are fresh terminals.)
▶ This grammar is ambiguous iff the given

instance of the Post correspondence problem
has a solution.



Summary

▶ Representing Turing machines.
▶ A self-interpreter (a universal Turing machine).
▶ The halting problem.
▶ A Turing machine that is a 𝜒 interpreter.
▶ The Post correspondence problem.



Next week

▶ Summary of the course.
▶ Old exam questions.



Any questions?

▶ I expect plenty of spare time at the end of
this lecture.

▶ Feel free to ask questions about, say, things
that are difficult, or things you want to know
more about.


	Introduction
	Representing Turing machines
	Self-interpreter
	The halting problem
	Χ interpreter
	The Post correspondence problem
	Summary

