Nils Anders Danielsson

2017-12-04

Today

Representing Turing machines.
A self-interpreter (a universal Turing machine).

>

>

» The halting problem.

» A Turing machine that is a x interpreter.
>

The Post correspondence problem.

Representing
Turing
machines

Assume that S = {s, ..., s, }
Note that S is always non-empty.
r S A r n il

r A l_k—l

Sk

Assume that ¥ = {¢,, ..., ¢,,, } and
F'={_}U{c, s Cnant-

I_F—I :l_n—l
l__l_l :l_O_l
rck—I:rk—l

— —

I‘L‘I
I‘R‘I

The transition function

» Arule § (s,z) = (s’,2’, d) is represented by
I_S-I—|—|—rl'—l—|—|—l_8/-l—|—l—rl'/—l—|—|—rd—l_

» The transition function is represented by the
representation of a list containing all of its
rules (ordered in some way).

Turing machines and strings

» A Turing machine (5, s
represented by

3,T,8) € TM is

mnitial

rsjﬂ_l_sinitialjﬂ_rz—l_‘H_I_F—I—H_I—(s—l.

» A pair consisting of a Turing machine tm and a
corresponding input string xs is represented by

“tm ' H " xs .

» Note that this encoding only uses two
non-blank symbols, 0 and 1.

» None

> S_{SO} Y= {Cl} F:{Clac27u}'
6 (S0, ¢1) = (80> €15 L)

» S = {SO}' Y= {61702}1 I'= {CI7C2H—'}'
6 (805 ¢1) = (S0, 25 R)

Self-

Interpreter

Self-interpreter

A self-interpreter or universal Turing machine
eval can simulate arbitrary Turing machines with
arbitrary input:

eval {0 1}

Vime TM. Y xs € List ¥,
[eval] " (tm,xs) " =" [tm] xs”

Implementation sketch

Possibly buggy:

» Let us use three tapes in the implementation.
Can convert to a one-tape machine later.

» Mark the left end of the input tape.

» Move the input string to the second tape.
Mark the left end and the head’s position.

» Write the initial state to the third tape.
Mark the left end.

Implementation sketch

» Simulate the input TM,
using the rules on the first tape.
» If the simulation halts,
write the result to the first tape and halt.

The halting
problem

The halting problem

halts € {(tm,zs) | tm € TM,xs € List %, } — Bool
halts (tm, xs) =
if [tm] zs is defined then
true
else
false

This function is not Turing-computable.

The halting problem

The halting problem can also be viewed as a
language:

{"(tm,zs) " | tm € TM,zs € List &
[tm] xs is defined }

tm>

This language is Turing-undecidable.

(Note the difference between this definition and the
previous one.)

The halting problem (with self-application)

{"tm | tm € TM,[tm] " tm " is defined }

This language is Turing-undecidable. Proof sketch:
» Assume that the TM halts decides it.
» Define a TM terminv in the following way:

» Simulate halts with terminv's input.
» If halts accepts, loop forever.
» If halts rejects, halt.

» Note that terminv applied to " terminv ' halts
iff it does not halt.

The halting problem is undecidable

{" (tm,zs) | tm € TM,zs € List .
[tm] xs is defined }

tm»o

Proof sketch:
» Assume that the TM halts decides it.
» We can then implement a TM for the
halting problem with self-application:

» If the input is not " tm ' for some
tm € TM, reject.

» Ifitis " tm 7, write 7?7 on the tape.

» Run halts.

X interpreter

A Y interpreter

The x semantics is Turing-computable:

» X programs can be represented as strings in
some finite alphabet >:

"_"™ ¢ CExp — List ¥

» There is a TM ch: satisfying the following
properties:

Zchi =X

Vee CExp. [chilyy " e ™ ="[e], ™

» How can recursion be implemented?
» One idea: An explicit stack on a separate tape.

Implementation sketch

» Come up with a small-step semantics for x.
» Use small steps also for substitution.

» Make sure that every small step can be
simulated on a TM.

» The design can be based on some
abstract machine for the A-calculus,
perhaps the CEK machine.

Every y-computable partial function in
N — N is Turing-computable

Proof sketch:
» If f € N— N is y-computable, then

VmeN.[e mX], ="fm™X

for some e € CExp.

» The following TM implements f:
» Convert input: "m ™™= e ", XM,
» Simulate the y interpreter.

» Convert output: """ n X TTM 5 7 p TTM

The Post

correspondence
problem

The Post correspondence problem

Definition (for a set 3 with at least two members):
» Given: z,...,z, € List ¥ x List 3.
» Goal: Find k> 1 and iy,...,i, € {1,...,n}
such that

Jst w A - fstx =
snd z; H -+ snd z; .

Examples on Wikipedia.

https://en.wikipedia.org/wiki/Post_correspondence_problem

» A: (001,00), (01,10).
» B: (01,001), (010,01).

The Post correspondence problem

» Undecidable.

» Note that there is no reference to
Turing machines (or x expressions)
in the statement of the problem.
» Proof idea:
» Construct pairs such that a TM halts iff
the problem is solvable.
» The resulting string (if any) encodes the
TM's computation history.
» Sipser's Introduction to the Theory of
Computation (available online via Chalmers’
library) contains a readable proof.

» Undecidable:
Is a context-free grammar ambiguous?

» The Post correspondence problem can be
reduced to this one.

Ambiguity

Proof sketch (taken from Sipser):
» Given: Pairs (¢;,;),...,(,,b,).

» Define a CFG with three non-terminals, and
Start as the starting non-terminal:

Start = Top | Bottom

Top ==1t; Top 1|...]¢t, Top n
| 4 1]...]¢, n

Bottom ::= by Bottom 1| ...|b, Bottom n
| b 1]...]0, n

(Here 1, ...,n are fresh terminals.)

» This grammar is ambiguous iff the given
instance of the Post correspondence problem
has a solution.

Summary

Representing Turing machines.
A self-interpreter (a universal Turing machine).

>

>

» The halting problem.

» A Turing machine that is a x interpreter.
>

The Post correspondence problem.

» Summary of the course.
» Old exam questions.

Any questions?

» | expect plenty of spare time at the end of
this lecture.

» Feel free to ask questions about, say, things
that are difficult, or things you want to know
more about.

	Introduction
	Representing Turing machines
	Self-interpreter
	The halting problem
	Χ interpreter
	The Post correspondence problem
	Summary

