Lecture Models of Computation (DIT310, TDA184)

Nils Anders Danielsson

2017-12-04

- Representing Turing machines.
- ► A self-interpreter (a universal Turing machine).
- ► The halting problem.
- A Turing machine that is a χ interpreter.
- ▶ The Post correspondence problem.

Representing Turing machines

Assume that
$$S = \{s_0, ..., s_n\}$$
.
Note that S is always non-empty.

$$\begin{bmatrix} S \\ s_k \end{bmatrix} = \begin{bmatrix} n \\ k \end{bmatrix}$$

Assume that
$$\Sigma = \{c_1, ..., c_m\}$$
 and $\Gamma = \{\sqcup\} \cup \{c_1, ..., c_{m+n}\}.$

$$\begin{bmatrix} \Sigma \\ \Gamma \end{bmatrix} = \begin{bmatrix} m \\ m \end{bmatrix}$$
$$\begin{bmatrix} \Gamma \\ \mu \end{bmatrix} = \begin{bmatrix} n \\ n \end{bmatrix}$$
$$\begin{bmatrix} \mu \\ \sigma \end{bmatrix} = \begin{bmatrix} 0 \\ c_k \end{bmatrix}$$
$$\begin{bmatrix} c_k \end{bmatrix} = \begin{bmatrix} k \end{bmatrix}$$

Directions

$\begin{bmatrix} \mathsf{L} \\ \mathsf{R} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$ $\begin{bmatrix} \mathsf{R} \\ \mathsf{R} \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$

► A rule
$$\delta(s, x) = (s', x', d)$$
 is represented by
 $\lceil s \rceil + \lceil x \rceil + \lceil s' \rceil + \lceil x' \rceil + \lceil d \rceil$.

 The transition function is represented by the representation of a list containing all of its rules (ordered in some way).

Turing machines and strings

• A Turing machine $(S, s_{initial}, \Sigma, \Gamma, \delta) \in TM$ is represented by

$$\lceil S \rceil + \lceil s_{initial} \rceil + \lceil \Sigma \rceil + \lceil \Gamma \rceil + \lceil \delta \rceil.$$

► A pair consisting of a Turing machine *tm* and a corresponding input string *xs* is represented by

$$\lceil tm \rceil + \lceil xs \rceil$$
.

▶ Note that this encoding only uses two non-blank symbols, 0 and 1.

What Turing machine does 001010010011101010100011101010001 represent?

None

►
$$S = \{s_0\}, \Sigma = \{c_1\}, \Gamma = \{c_1, c_2, \sqcup\}, \delta(s_0, c_1) = (s_0, c_1, \mathsf{L})$$

•
$$S = \{s_0\}, \Sigma = \{c_1, c_2\}, \Gamma = \{c_1, c_2, \sqcup\}, \delta(s_0, c_1) = (s_0, c_2, \mathsf{R})$$

Self-

interpreter

A self-interpreter or *universal Turing machine eval* can simulate arbitrary Turing machines with arbitrary input:

Possibly buggy:

- Let us use three tapes in the implementation.
 Can convert to a one-tape machine later.
- Mark the left end of the input tape.
- Move the input string to the second tape.
 Mark the left end and the head's position.
- Write the initial state to the third tape.
 Mark the left end.

- Simulate the input TM, using the rules on the first tape.
- If the simulation halts, write the result to the first tape and halt.

The halting problem

This function is not Turing-computable.

The halting problem can also be viewed as a language:

$$\{ \lceil (tm, xs) \rceil \mid tm \in TM, xs \in List \Sigma_{tm}, \\ \llbracket tm \rrbracket xs \text{ is defined} \}$$

This language is Turing-undecidable.

(Note the difference between this definition and the previous one.)

The halting problem (with self-application)

 $\{ \lceil tm \rceil \mid tm \in TM, \llbracket tm \rrbracket \rceil \text{ is defined} \}$

This language is Turing-undecidable. Proof sketch:

- ► Assume that the TM *halts* decides it.
- ► Define a TM *terminv* in the following way:
 - ▶ Simulate *halts* with *terminv*'s input.
 - ▶ If *halts* accepts, loop forever.
 - ▶ If *halts* rejects, halt.
- ► Note that *terminv* applied to 「*terminv* ¬ halts iff it does not halt.

The halting problem is undecidable

$$\{ \lceil (tm, xs) \rceil \mid tm \in TM, xs \in List \Sigma_{tm}, \\ [[tm]] xs \text{ is defined} \}$$

Proof sketch:

- ▶ Assume that the TM *halts* decides it.
- We can then implement a TM for the halting problem with self-application:
 - If the input is not $\lceil tm \rceil$ for some $tm \in TM$, reject.
 - If it is $\lceil tm \rceil$, write ??? on the tape.
 - ▶ Run *halts*.

What does ??? stand for?

- ▶ 「「*tm* ¬ ¬
- ▶ tm + f tm

$$\blacktriangleright$$
 tm $+$ tm $-$

▶ *tm* ++ [¬] *tm* [¬] ++ [¬] [¬] *tm* [¬]

X interpreter

A χ interpreter

The χ semantics is Turing-computable:

 X programs can be represented as strings in some finite alphabet Σ:

$$\ulcorner_\neg^{\mathsf{TM}} \in \mathit{CExp} \to \mathit{List}\ \Sigma$$

There is a TM chi satisfying the following properties:

$$\Sigma_{chi} = \Sigma$$

 $\forall \ e \ \in \ CExp. \llbracket chi \rrbracket_{\mathsf{TM}} \ulcorner \ e \ \urcorner^{\mathsf{TM}} = \ulcorner \llbracket e \rrbracket_{\chi} \urcorner^{\mathsf{TM}}$

- ► How can recursion be implemented?
- One idea: An explicit stack on a separate tape.

- Come up with a small-step semantics for χ .
- ▶ Use small steps also for substitution.
- Make sure that every small step can be simulated on a TM.
- The design can be based on some abstract machine for the λ-calculus, perhaps the CEK machine.

Every χ -computable partial function in $\mathbb{N} \longrightarrow \mathbb{N}$ is Turing-computable

Proof sketch:

 \blacktriangleright If $f\in\mathbb{N}\rightharpoonup\mathbb{N}$ is $\chi\text{-computable, then}$

$$\forall \ m \in \mathbb{N}. \llbracket e \ulcorner m \urcorner^{\chi} \rrbracket_{\chi} = \ulcorner f \ m \urcorner^{\chi}$$

for some $e \in CExp$.

▶ The following TM implements *f* :

- Convert input: $\ulcorner m \urcorner \intercal M \mapsto \ulcorner e \ulcorner m \urcorner \chi \urcorner \intercal M$.
- Simulate the χ interpreter.
- Convert output: $\lceil n \rceil^{\chi} \rceil^{\mathsf{TM}} \mapsto \lceil n \rceil^{\mathsf{TM}}$.

The Post correspondence problem

The Post correspondence problem

Definition (for a set Σ with at least two members):

• Given: $x_1, ..., x_n \in List \ \Sigma \times List \ \Sigma$.

▶ Goal: Find $k \ge 1$ and $i_1, ..., i_k \in \{1, ..., n\}$ such that

$$\begin{array}{l} \textit{fst } x_{i_1} \boxplus \cdots \boxplus \textit{fst } x_{i_k} = \\ \textit{snd } x_{i_1} \boxplus \cdots \boxplus \textit{snd } x_{i_k}. \end{array}$$

Examples on Wikipedia.

Is the Post correspondence problem solvable for the given pairs of strings?

The Post correspondence problem

- Undecidable.
- Note that there is no reference to Turing machines (or χ expressions) in the statement of the problem.
- Proof idea:
 - Construct pairs such that a TM halts iff the problem is solvable.
 - The resulting string (if any) encodes the TM's computation history.
- Sipser's Introduction to the Theory of Computation (available online via Chalmers' library) contains a readable proof.

Ambiguity

- Undecidable: Is a context-free grammar ambiguous?
- The Post correspondence problem can be reduced to this one.

Ambiguity

Proof sketch (taken from Sipser):

- Given: Pairs $(t_1, b_1), ..., (t_n, b_n)$.
- Define a CFG with three non-terminals, and Start as the starting non-terminal:

(Here 1, ..., n are fresh terminals.)
This grammar is ambiguous iff the given instance of the Post correspondence problem has a solution.

- Representing Turing machines.
- ► A self-interpreter (a universal Turing machine).
- ► The halting problem.
- A Turing machine that is a χ interpreter.
- ▶ The Post correspondence problem.

• Summary of the course.

▶ Old exam questions.

- I expect plenty of spare time at the end of this lecture.
- Feel free to ask questions about, say, things that are difficult, or things you want to know more about.