Nils Anders Danielsson

2017-11-06

Today

» Inductive definitions:

» Functions defined by primitive recursion.
» Proofs by structural induction.

» Two models of computation:

» PRF.
» The recursive functions.

Natural
numbers

The set of natural numbers, N, is defined
inductively in the following way:

» zero € N.
» If n € N, then sucn € N.

The natural numbers

We can construct natural numbers by using these
rules a finite number of times. Examples:

» 0 = zero.
» 1 = suc zero.

» 2 = suc (suc zero).

The value zero and the function suc are called
constructors.

An alternative way to present the rules:

n €N

zero € N sucn € N

Propositions, predicates and relations

» A proposition is something that can (perhaps)
be proved or disproved.

» A predicate on a set A is a function from A to
propositions.

» A binary relation on two sets A and B is a
function from A and B to propositions.

» Relations can also have more arguments.

Equality

Two natural numbers are equal if they are built up
by the same constructors.

We can see this as an inductively defined relation:

m=n

ZEero = Zero SuC m = sucn

(The names of the constructors have been omitted.)

Primitive recursion

We can define a function from N to a set A in the
following way:
» A value z € A, the function’s value for zero.
» A function s € N— A — A, that given n € N
and the function's value for n gives the
function’'s value for suc n.

A definition by primitive recursion can be given the
following schematic form:

feN—A
fzero =z

f(sucn)=sn(fn)

We can capture this scheme with a higher-order
function:

rec€ A->(N—-A—A4) —-N—A4
rec z s zero =z
rec z s (sucn) =sn (rec z s n)

» Can we define add € N—- N — N
using primitive recursion?

» Let “A” be N — N.
» Scheme:

add € N— (N—N)
add zero =7
add (sucm) =7

» Can we define add € N—- N — N
using primitive recursion?

» Let “A” be N — N.
» Scheme:

add € N— (N—N)
add zero =An.n
add (sucm) =7

» Can we define add € N—- N — N
using primitive recursion?

» Let “A” be N — N.
» Scheme:

add € N— (N—N)
add zero = An.n
add (suc m) = An. ?

Example: Addition

» Can we define add e N—-N — N
using primitive recursion?

» Let “A” be N — N.
» Scheme:

add € N— (N—N)
add zero =An.n
add (suc m) = An.suc (add m n)

» rec (An.n) (Am r.An.suc (r mn))
» rec (An.n) (Am r.An.suc (r n))
» rec (An.n) (Am r.An.suc (r m))

Structural induction

Let us assume that we have a predicate P on N. If
we can prove the following two statements, then we
have proved Vn. P n:

» P zero.
» Vn. P n implies P (suc n).

Example: Addition

Theorem: VYm € N. add m zero = m.

Proof:

» Let us use structural induction, with the
predicate P = Am. add m zero = m.

» There are two cases:

P zero < {By definition. }
add zero zero = zero < { By definition. }
zero = zero

Example: Addition

Theorem: VYm € N. add m zero = m.

Proof:
» Let us use structural induction, with the
predicate P = Am. add m zero = m.
» There are two cases:

P (suc m)

add (suc m) zero = suc m
suc (add m zero) = suc m
add m zero = m

Pm

LU L (A

More
inductively
defined sets

Cartesian products

The cartesian product of two sets A and B is
defined inductively in the following way:

r e A y € B
parzy € AX B

Notice that this definition is “non-recursive”.

Primitive recursion

Scheme for primitive recursion for pairs:

feAxB—C
f(pairzy)=paxy

The corresponding higher-order function:

uncurry € (A—-B—C)—Ax B —(C
uncurry p (pairz y) =pzy

Structural induction

Let us assume that we have a predicate P on
A x B. If we can prove the following statement,
then we have proved Vp. P p:

» Vz y. P (pair z y).

The set of finite lists containing natural numbers is
defined inductively in the following way:

r €N xs € Nat-list
nil € Nat-list cons z s € Nat-list

Primitive recursion

Scheme for primitive recursion for natural number
lists:

f € Nat-list — A
f nil =n
f (cons x xs) = c x xs (f xs)

The corresponding higher-order function:

listrec € A — (N — Nat-list = A — A) —
Nat-list — A

listrec n c nil =n

listrec n ¢ (cons x xs) = ¢ x xs (listrec n ¢ zs)

Structural induction

Let us assume that we have a predicate P on
Nat-list. If we can prove the following statements,
then we have proved Vus. P xs:

» P nil.

» Vz zs. P xs implies P (cons z zs).

Pattern

» Do you see the pattern?
» Given an inductive definition of the kind
presented here, we can derive:

» The structural induction principle.
» The primitive recursion scheme.

Quiz

Define the booleans inductively. How many
cases does the structural induction principle
have?

» 1
> 2
» 3
» 4

Bonus question: Can you think of an inductive
definition for which the answer would be 07

PRF

The primitive recursive functions

» A model of computation.

» Programs taking tuples of natural numbers to
natural numbers.

» Every program is terminating.

Sketch

The primitive recursive functions can be constructed
in the following ways:

fO=
f (1’) l+2z
[y, Ty oy T,,) = 1,
f(x, ...) g (hy (T, ey y)y oy By (24, 00y ,))
f(x,...,z,,0) =g (2,...,3,)
f (2, ..z, 1—|— T) =

h (xl,. T [(X 4, 7)), T)

Vectors, lists of a fixed length:

s € A" reA
nil € A° zs,r € AMT

Read nil, z, y, z as ((nil, z), y), 2.

An indexing operation can be defined by (a slight
variant of) primitive recursion:

inder € A" - {ieN|0<i<n}—A
index (zs,x) zero =ux
index (zs,x) (suc n) = index zs n

Abstract syntax

PRF,: Functions that take n arguments.

0<i1<n

zero € PRF suc € PRI, proj « € PRF,

f € PRF,, gs € (PRF,)™
comp f gs € PRF,

f € PRF, g € PRF,,
rec f g € PRF_,

Denotational semantics

[_] € PRF, — (N"—N)

[zero] nil =0

[suc | (nibn) =14mn

[proj i lp = index p i
[comp f gs]p = [/1 (Lgs]* p)

[recfg](p,zero) =[f]p

[recfg 1 (p,sucn)=[g] (p,[recf g] (p,n),n)
[_]* € (PRF,)" — (N™ — N")

[nil Jx p = nil

[fs:f Ixp=Tfs]*p, [f] p

Denotational semantics

[_] € PRF, — (N"—N)

[zero] nil =0

[suc | (nibn)=14+mn

[proj i lp = index p i
[compfygslp =1/1(lgs]xp)

[recf g (p;n) = rec([f]p)

(An - lg] (p,7,n))

[_]* € (PRF,)" — (N™ — N")
[nil J*p = nil
Lfs, fIxp=11fsl*p,[f]p

Quiz

Which of the following terms, all in PRF,,
define addition?

proj 0)
proj 1)
comp suc (nil, proj 0))

» rec (proj 0)
proj 0)
proj 0)
proj 0)

» rec
» rec
» rec

TN TN TN TN
N N N

comp suc (nil, proj 1))

Hint: Examine [p] (nil, m, n) for each program p.

Addition

Goal: Define add satisfying the following equations:

V' m. [add] (nil, m,zero) = m
vV m n.[add] (nil, m,suc n) =
suc ([add] (nil, m,n))

If we can find a definition of add satisfying these
equations, then we can prove using structural
induction that add is an implementation of addition.

Perhaps we can use rec:

V' m. [recf g] (nil,m,zero) =m
vV m n.[rec f g] (nil, m,suc n) =
suc ([rec f g] (nil, m, n))

Perhaps we can use rec:

Vom. [f] (nil,m) =m
vV m n.[rec f g] (nil, m,suc n) =
suc ([rec f g] (nil, m, n))

Perhaps we can use rec:

Vm. [f] (nil,m)
vV m n.[g] (nil, m, [rec f ¢g] (nil, m,n),n)
suc ([rec f g] (nil, m, n))

m

The zero case:

VvV m. [f] (nil,m) =m

The zero case:

vV m. [proj 0] (nil,m) = m

The suc case:

V' m n.[g] (nil, m, [rec f g] (nil,m,n),n) =
suc ([rec f g] (nil, m, n))

The suc case:

Vmnr. [g] (nil,m,r,n) =sucr

The suc case:

V' m n r.[[comp h hs] (nil, m,r,n) =sucr

The suc case:

V' m n r.[h] ([hs]* (nil,m,r,n)) =sucr

The suc case:

vV m n r. [suc] ([nil, k]* (nil, m,r,n)) = suc r

The suc case:

vV m n r.[suc] (nil, [£] (nil, m,r, n)) =sucr

The suc case:

V' 'm n r.suc ([k] (nil, m,r,n)) =sucr

The suc case:

Vmunr k] (nil,m,r,n)=r

The suc case:

V' m n r.[proj 1] (nil,m,r,n)=r

We end up with the following definition:

rec (proj 0) (comp suc (nil, proj 1))

Big-step operational semantics

zero [nil] § 0 suc[nil,n] J 1+ n

proj i [p] | index p i

rec f glp,m] I n
flol 4 n glp,n,ml | o

rec f g[p,zero] | n rec f g[p,sucm] | o

gslpl V= p" flpl U n
comp f gs[p] | n

fslpl ¥ ns — flp] U n
nil [p] 4* nil fs, flp] V* ns,n

This can be proved by induction on the structure of
the semantics in one direction, and f/fs in the
other.

Thus the operational semantics is total and
deterministic:

» Vfp. In.flp] I n.
» Vf pmn.

flpl U mand flp] § nimplies m = n.

» comp zero nil [nil;5,7] | 0
» comp suc (nil, proj 0) [nil,; 5,7] | 6
» rec zero (proj 1) [nil,2] § 0

Expressiveness

Not every (Turing-) computable function is primitive
recursive.

Proof sketch:

» Assume that every computable function
f € N— N is represented by f € PRF,
satisfying Vn. [f] (nil,n) = f n.

» Exercise:
Define a function code € PRF'| — N with a
computable left inverse decode.

Expressiveness

» Define g € N— N by
g n = [decode n] (nil,; n) + 1.

» Note that g is computable.
» We get

g (code g)
[decode (code g)] (nil, code g) + 1

Lg] (nil, code g) + 1
g (code g) + 1,

which is impossible.

No self-interpreter

There is no program eval € PRF, satisfying
vV m,n € N. Jeval] (nil, m,n) = [decode m] (nil,n).

Proof sketch:
» Define ¢ € PRF| by

comp suc (nil, comp eval (nil, proj 0, proj 0)).

» This function satisfies

[g] (nil,n) = [decode n] (nil, n) + 1.

No self-interpreter

There is no program eval € PRF, satisfying
vV m,n € N. Jeval] (nil, m,n) = [decode m] (nil,n).

Exercise:
» Prove that no program eval € PRF'| satisfies

VvV m,n € N. [eval] (nil,2™ % 3") =
[decode m] (nil, n).

The Ackermann function

» Another example of a computable function
that is not primitive recursive.

» One variant:

ack € N x N —N

ack (zero, n) suc n

ack (suc m,zero) = ack (m,suc zero)

ack (suc m,suc n) = ack (m, ack (suc m,n))

» For more details, see Nordstrom, The primitive
recursive functions.

The

recursive
functions

The recursive functions

» A model of computation.

» Programs taking tuples of natural numbers to
natural numbers.

» Not every program is terminating.

Abstract syntax

Extends PRF with one additional constructor.

vV Vv

RF,: Functions that take n arguments.
Minimisation:

v

f S RFl—l—n
min f € RF,

v

Rough idea: min f [p] is the smallest n for
which f [p, n] is 0.

Note that there may not be such a number.

v

The operational semantics is extended:

flpsn] 30
Vm<n.3dk eN.flp,m] | 1+k

min £ o] ¥ n

Big-step operational semantics

The operational semantics is extended:

flosn] 40
Vm<n. dkeN.flp,m] | 1+ k&

min f[p] 4 n

The semantics is deterministic, but not total:

» flp] U mand f[p] J n implies m = n.
» Vm.3f € RF,,.VYp. Bn.flp] | n

» Construct f € RF in such a way that
An. f [nil] | n.

Denotational semantics?

We can try to extend the denotational semantics:
[-] € RF, — (N" —=N)
[min f] p = search f p 0

search € RF'{, , —+N"—N—N
search f pn =

it [f](p,n)=0

then n

else search f p (1 +n)

Partial functions

» This "definition” does not give rise to (total)
functions.

» We can instead define a semantics as a
function to partial functions:

[] € RF, — (N" —N)

[f1p=
if f[p] 4 n for some n
then n

else undefined

» Equivalent to Turing machines, A-calculus, ..

Summary

» Inductive definitions:

» Functions defined by primitive recursion.
» Proofs by structural induction.

» Two models of computation:

» PRF.
» The recursive functions.

