Parallel Functional Programming Data Parallelism

Mary Sheeran

http://www.cse.chalmers.se/edu/course/pfp

Data parallelism

Introduce parallel data structures and make operations on them parallel

Often data parallel arrays

Canonical example : NESL (NESted-parallel Language) (Blelloch)

Data parallelism

Introduce parallel data structures and make operations on them parallel

Often data parallel arrays

Canonical example : NESL (NESted-parallel Language) (Blelloch)

See video of ICFP10 invited talk on Lectures page

NESL

concise (good for specification, prototyping)
allows programming in familiar style (but still gives parallelism)
allows nested parallelism (as distinct from flat)
associated language-based cost model
gave decent speedups on wide-vector parallel machines of the day

Hugely influential!
http://www.cs.cmu.edu/~scandal/nesl.html

NESL

Parallelism without concurrency!

Completely deterministic (modulo floating point noise)

No threads, processes, locks, channels, messages, monitors, barriers, or even futures, at source level

Based on Blelloch's thesis work: Vector Models for Data-Parallel Computing, MIT Press 1990

NESL

NESL is a sugared typed lambda calculus with a set of array primitives and an explicit parallel map over arrays

To be useful for analyzing parallel algorithms, NESL was designed with rules for calculating the work (the total number of operations executed) and depth (the longest chain of sequential dependence) of a computation.

NESL

For modeling the cost of NESL we augment a standard call by value operational semantics to return two cost measures: a DAG representing the sequential dependences in the computation and a measure of the space taken by a sequential implementation. We show that a NESL program with w work (nodes in the DAG) d depth (levels in the DAG) and s sequential space can be implemented on a p processor butterfly network, hypercube or CRCW PRAM using O(w/p + d log p) time and $\mathrm{O}(s+d p \log p)$ reachable space. For programs with sufficient parallelism these bounds are optimal in that they give linear speedup and use space within a constant factor of the sequential space.

Quotes are from ICFP'96 paper

A Provable Time and Space Efficient Implementation of NESL

Guy E. Blelloch and John Greiner
Carnegie Mellon University
\{blelloch, jdg\}@cs.cmu.edu

Abstract

In this paper we prove time and space bounds for the implementation of the programming language NESL on various parallel machine models. NESL is a sugared typed λ-calculus with a set of array primitives and an explicit parallel map over arrays. Our results extend previous work on provable implementation bounds for functional languages by considering space and by including arrays. For modeling the cost of NESL we augment a standard call-by-value operational semantics to return two cost measures: a DAG representing the sequential dependences in the computation, and a measure of the space taken by a sequential implementation. We show that a NesL program with w work (nodes in the DAG), d depth (levels in the DAG), and s sequential space can be implemented on a p processor butterfly network, hypercube, or CRCW PRAM using $O(w / p+d \log p)$ time and $O(s+d p \log p)$ reachable space. ${ }^{1}$ For programs with sufficient parallelism these bounds are optimal in that they give linear speedup and use space within a constant factor of the sequential space.

The idea of a provably efficient implementation is to add to the semantics of the language an accounting of costs, and then to prove a mapping of these costs into running time and/or space of the implementation on concrete machine models (or possibly to costs in other languages). The motivation is to assure that the costs of a program are well defined and to make guarantees about the performance of the implementation. In previous work we have studied provably time efficient parallel implementations of the λ-calculus using both call-by-value [3] and speculative parallelism [18]. These results accounted for work and depth of a computation using a profiling semantics $[29,30]$ and then related work and depth to rumning time on various machine models.

This paper applies these ideas to the language NBSL and extends the work in two ways. First, it includes sequences (arrays) as a primitive data type and accounts for them in both the cost semantics and the implementation. This is motivated by the fact that arrays cannot be simulated efficiently in the λ-calculus without arrays (the simulation of an array of length n using recursive types requires a $\Omega(\log n)$ slowdown). Second, it augments the profiling semantics with

> This paper adds the accounting of costs to the semantics of the language and proves a mapping of those costs into running time / space on concrete machine models

A Provable Time and Space Efficient Implementation of NESL

Guy E. Blelloch and John Greiner
Carnegie Mellon University
\{blelloch, jdg\}@cs.cmu.edu

Abstract

In this paper we prove time and space bounds for the implementation of the programming language NESL on various parallel machine models. NESL is a sugared typed λ-calculus with a set of array primitives and an explicit parallel map over arrays. Our results extend previous work on provable implementation bounds for functional languages by considering space and by including arrays. For modeling the cost of NESL we augment a standard call-by-value operational semantics to return two cost measures: a DAG representing the sequential dependences in the computation, and a measure of the space taken by a sequential implementation. We show that a Nesl program with w work (nodes in the DAG), d depth (levels in the DAG), and s sequential space can be implemented on a p processor butterfly network, hypercube, or CRCW PRAM using $O(w / p+d \log p)$ time and $O(s+d p \log p)$ reachable space. ${ }^{\mathrm{I}}$ For programs with sufficient parallelism these bounds are optimal in that they give linear speedup and use space within a constant factor of the sequential space.

The idea of a provably efficient implementation is to add to the semantics of the language an accounting of costs, and then to prove a mapping of these costs into running time and/or space of the implementation on concrete machine models (or possibly to costs in other languages). The motivation is to assure that the costs of a program are well defined and to make guarantees about the performance of the implementation. In previous work we have studied provably time efficient parallel implementations of the λ-calculus using both call-by-value [3] and speculative parallelism [18]. These results accounted for work and depth of a computation using a profiling semantics [29,30] and then related work and depth to rumning time on various machine models.

This paper applies these ideas to the language NBSL and extends the work in two ways. First, it includes sequences (arrays) as a primitive data type and accounts for them in both the cost semantics and the implementation. This is motivated by the fact that arrays cannot be simulated efficiently in the λ-calculus without arrays (the simulation of an array of length n using recursive types requires a $\Omega(\log n)$ slowdown). Second, it augments the profiling semantics with

Connection Machine

First commercial massively parallel machine

65k processors
can see CM-1 and CM-5 (from 1993) at Computer History Museum, Mountain View
Image: © Thinking Machines Corporation, 1986. Photo: Steve Grohe.

Hypercube

NESL array operations

function factorial $(\mathrm{n})=$
if ($n<=1$) then 1
else $n *$ factorial($n-1$);
\{factorial(i): i in [3, 1, 7]\};
apply to each = parallel map (works with user-defined functions
=> load balancing)
list comprehension style notation

Online interpreter © $^{-}$

The result of:

function factorial $(\mathrm{n})=$ if ($n<=1$) then 1 else n *factorial($n-1$);
\{factorial(i) : in $[3,1,7]\} ;$
is:
factorial $=\mathrm{fn}$: int $->$ int
it $=[6,1,5040]:[i n t]$
Bye.

apply to each (multiple sequencs)

The result of:
$\{\mathrm{a}+\mathrm{b}: \mathrm{a}$ in $[3,-4,-9] ; \mathrm{b}$ in $[1,2,3]\} ;$ is:
it $=[4,-2,-6]:[i n t]$
Bye.

apply to each (multiple sequencs)

The result of:

$\{\mathrm{a}+\mathrm{b}: \mathrm{a}$ in $[3,-4,-9] ; \mathrm{b}$ in $[1,2,3]\} ;$ is:
it $=[4,-2,-6]:[i n t]$
Bye.

Qualifiers in comprehensions are zipping rather than nested as in Haskell Prelude> [$a+b \mid a<-[3,-4,-9]$, $b<-[1,2,3]$]
[4,5,6,-3,-2,-1,-8,-7,-6]

Filtering too

The result of:

$\{a * a: a$ in $[3,-4,-9,5] \mid a>0\} ;$
is:
it $=[9,25]:[$ int $]$
Bye

scan
 (Haskell first)

*Main> scanl1 (+) [1..10]
[1,3,6,10,15,21,28,36,45,55]
Main> scanl1 () [1..10]
[1,2,6,24,120,720,5040,40320,362880,3628800]

scan diagram

$$
\begin{array}{lllll}
0 & \cdots & 0: 3 & \cdots & 0: 7
\end{array}
$$

binary operator

Brent Kung ('79)

Brent Kung

forward tree + several reverse trees

recursive decomposition

$$
s_{i}^{j}=a_{i} * a_{i+1} * \ldots * a_{j}
$$

indices from 1 here

recursive decomposition

$$
s_{i}^{j}=a_{i} * a_{i+1} * \ldots * a_{j}
$$

divide
conquer
combine

prescan

scan "shifted right by one"

 prescan of$\left[a_{1}, a_{2}, a_{3}, \quad, a_{4}, \ldots \quad, a_{n}\right]$ is
$\left[1, a_{1}, a_{1} * a_{2}, a_{1} * a_{2} * a_{3}, \ldots, a_{1} * \ldots * a_{n-1}\right]$
identity element

scan from prescan

easy (constant time)

$$
\begin{aligned}
& {\left[1, \quad a_{1}, a_{1} * a_{2}, a_{1} * a_{2} * a_{3}, \ldots, a_{1} * \ldots * a_{n-1}\right] a_{n}} \\
& {\left[a_{1}, a_{1} * a_{2}, a_{1} * a_{2} * a_{3}, \ldots, a_{1} * \ldots * a_{n-1}, a_{1} * \ldots * a_{n}\right]}
\end{aligned}
$$

scan from prescan

easy (constantti e)

$$
\begin{aligned}
& {\left[1, \quad a_{1}, a_{1} * a_{2}, a_{2} * a_{3}, \ldots, a_{1} * \ldots * a_{n-1}\right] a_{n}} \\
& {\left[a_{1}, a_{1} * a_{2}, a_{1} *\right.} \\
& \left.a_{3}, \ldots, a_{1} * \ldots * a_{n-1}, a_{1} * \ldots * a_{n}\right]
\end{aligned}
$$

NOTE
scan $=$ parallel prefix

the power of scan

Blelloch pointed out that once you have scan you can do LOTS of interesting algorithms, inc.

To lexically compare strings of characters. For example, to determine that "strategy" should appear before "stratification" in a dictionary
To evaluate polynomials
To solve recurrences. For example, to solve the recurrences

$$
x_{i}=a_{i} x_{i-1}+b_{i} x_{i-2} \text { and } x_{i}=a_{i}+b_{i} / x_{i-1}
$$

To implement radix sort
To implement quicksort
To solve tridiagonal linear systems
To delete marked elements from an array
To dynamically allocate processors
To perform lexical analysis. For example, to parse a program into tokens
and many more
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/ieee-scan.ps.gz

prescan in NESL

```
function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
    let e = even_elts(a);
        o = odd_elts(a);
        s = scan_op(op,identity,{op(e,o): e in e; o in o})
    in interleave(s,{op(s,e): s in s; e in e});
```


prescan in NESL

```
function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
    let e = even_elts(a);
        o = odd_elts(a);
    s = scan_op(op,identity,{op(e,o): e in e; o in o})
    in interleave(s,{op(s,e): s in s; e in e}];
```

zipWith op e o zipWith op se

prescan

```
function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
    let e = even_elts(a);
        o = odd_elts(a);
    s = scan_op(op,identity,{op(e,o): e in e; o in o})
    in interleave(s,{op(s,e): s in s; e in e});
scan_op('+, 0, [2, 8, 3, -4, 1, 9, -2, 7]);
is:
scan_op = fn : ((b, b) -> b, b, [b]) -> [b] :: (a in any; b in any)
it =[0,2,10,13,9,10,19,17] : [int]
```


prescan

```
function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
    let e = even_elts(a);
        o = odd_elts(a);
    s = scan_op(op,identity,{op(e,o): e in e; o in o})
    in interleave(s,{op(s,e): s in s; e in e});
scan_op(max, 0, [2, 8, 3, -4, 1, 9, -2, 7]);
is:
scan_op = fn : ((b, b) -> b, b, [b]) -> [b] :: (a in any; b in any)
it = [0, 2, 8, 8, 8, 8, 9, 9] : [int]
```


Batcher's bitonic merge

```
function bitonic_sort(a) =
if (#a == 1) then a
else
    let
        bot = subseq(a,0,#a/2);
        top = subseq(a,#a/2,#a);
        mins = {min(bot,top):bot;top};
        maxs = {max(bot,top):bot;top};
    in flatten({bitonic_sort(x) : x in [mins,maxs]});
```


bitonic_sort (merger)

bitonic_sort (merger)

bitonic sequence

inc (not decreasing) then
dec (not increasing)
or a cyclic shift of such a sequence

Butterfly

Butterfly

Now use Divide and Conquer (again) to do sorting

How??

bitonic sort

http://www.cs.kent.edu/~batcher/sort.pdf

bitonic sort

function batcher_sort(a) =
if (\#a ==1) then a else
let $\mathrm{b}=\{$ batcher_sort(x$): \mathrm{x}$ in bottop(a) $\}$; in bitonic_sort(b[0]++reverse(b[1]));

bitonic sort

http://www.cs.kent.edu/~batcher/sort.pdf

bitonic sort

Read Batcher's paper from 1968 It is a classic! (2753 citations on GS)

Quicksort

```
function Quicksort(A) = if (#A < 2) then A else
    let pivot = A[#A/2];
        lesser = {e in A| e< pivot};
        equal ={e in A| e == pivot};
        greater = {e in A| e > pivot};
        result = {quicksort(v): v in [lesser,greater]};
        in result[0] ++ equal ++ result[1];
```


parentheses notching

For each index, return the index of the matching parenthesis

```
function parentheses_match(string) =
let
    depth = plus_scan({if c==`( then 1 else -1 : c in string});
    depth = {d + (if c==`( then 1 else 0): c in string; d in depth};
    rnk = permute([0:#string], rank(depth));
    ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);
```

one scan, a map, a zipWith, two permutes and an interleave, also rank and odd_elts and even_elts

parentheses matching

$$
\begin{aligned}
& \text { permute }([7,8,9],[2,1,0]) ; \\
& \text { permute(}[7,8,9],[1,2,0]) ;
\end{aligned}
$$

For each index, retum ine in

```
function parentheses_match(
let
    it = [9, 7, 8] : [int]
    depth = plus_scan({if c==`( then 1 else -1 : c in string});
    depth = {d + (if c==`( then 1 else 0): c in string; d in depth};
    rnk = permute([0:#string], rank(depth));
    ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);
```

 it \(=[9,8,7]:[i n t]\)
 one scan, a map, a zipWith, two permutes and an interleave, also rank and odd_elts and even_elts

parentheses matching

```
                                    rank([6,8,9,7]);
                                    it =[0, 2, 3, 1]: [int]
For each index, return the in
function parentheses_match(
let
    depth = plus_scan({if c==`` it = [0, 2, 3, 1, 4]: [int]
    depth = {d + (if c==`` then 1 <
    rnk = permute([0:#string], rank(depth));
    ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);
```

one scan, a map, a zipWith, two permutes and an interleave, also rank and odd_elts and even_elts

parentheses notching

For each index, return the index of the matching pa
A "stepthrough" of this function is provided at end of these slides

```
function parentheses_match(string) =
let
    depth = plus_scan({if c==`( then 1 else -1 : c in string});
    depth = {d + (if c==`( then 1 else 0): c in string; d in depth};
    rnk = permute([0:#string], rank(depth));
    ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);
```

one scan, a map, a zipWith, two permutes and an interleave, also rank and odd_elts and even_elts

What does Nested mean??

\{plus_scan(a) : a in [[2,3], [8,3,9], [7]]\};

$$
\text { it }=[[0,2],[0,8,11],[0]]:[[\text { int }]]
$$

What does Nested mean??

sequence of sequences apply to each of a PARALLEL function

\{plus_scan(a): a in $[[2,3],[8,3,9],[7]]\} ;$

$$
\text { it }=[[0,2],[0,8,11],[0]]:[[\text { int }]]
$$

What does Nested mean??

```
sequence of sequences apply to each of a PARALLEL function
```

```
{plus_scan(a) : a in [[2,3], [8,3,9], [7]]};
```

{plus_scan(a) : a in [[2,3], [8,3,9], [7]]};
it = [[0, 2], [0, 8, 11], [0]] : [[int]]

```

Implemented using Blelloch's Flattening Transformation, which converts nested parallelism into flat. Brilliant idea, challenging to make work in fancier languages (see DPH and good work on Manticore (ML))

\title{
What does Nested mean?? Another example
}

\author{
function \(\operatorname{svxv}(s v, v)=\) sum ( \(\left\{x^{*} v[i]:(x, i)\right.\) in \(\left.s v\right\}\) );
}
function \(\operatorname{smxv}(\mathrm{sm}, \mathrm{v})=\)
\{ \(\operatorname{svxv}(\) row, v\()\) : row in sm \}

\section*{Nested Parallelism}

Arbitrarily nested parallel loops + fork-join

Assumes no synchronization among parallel tasks except at join points => a task can only sync with its parent (sometimes called fully strict)

Deterministic (in absence of race conditions)

Advantages:
Good schedulers are known
Easy to understand, debug, and analyze

\section*{Nested Parallelism}

Dependence graph is series-parallel


\section*{Nested Parallelism}

\section*{Dependence graph is series-parallel}


Task can only synchronise with its parent

\section*{But not}


\section*{But not}


\section*{Back to examples}

\section*{this prescan is actually flat}
```

function scan_op(op,identity,a) =
if \#a == 1 then [identity]
else
let e = even_elts(a);
o = odd_elts(a);
s = scan_op(op,identity,{op(e,o): e in e; o in o})
in interleave(s,{op(s,e): s in s; e in e});

```

\section*{Back to examples Batcher's bitonic merge IS NESTED}
```

function bitonic_sort(a) =
if (\#a == 1) then a
else
let
bot = subseq(a,0,\#a/2);
top = subseq(a,\#a/2,\#a);
mins = {min(bot,top):bot;top};
maxs = {max(bot,top):bot;top};
in flatten({bitonic_sort(x) : x in [mins,maxs]});

```

\section*{Back to examples Batcher's bitonic merge IS NESTED}
```

function bitonic_sort(a) =
if (\#a == 1) then a
else
let
bot = subseq(a,0,\#a/2);
top = subseq(a,\#a/2,\#a);
mins = {min(bot,top):bot;top};
maxs = {max(bot,top):bot;top};
in flatten({bitonic_sort(x) : x in [mins,maxs]});

```
nestedness is good for D\&C and for irregular computations

\title{
Back to examples parentheses matching is FLAT
}

For each index, return the index of the matching parenthesis
```

function parentheses_match(string) =
let
depth = plus_scan({if c==`(then 1 else -1 : c in string}); depth = {d + (if c==`(then 1 else 0): c in string; d in depth};
rnk = permute([0:\#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);

```

\section*{What about a cost model?}

Blelloch empasises
1) work: total number of operations
represents total cost (integral of needed resources over time \(=\) running time on one processor)
2) depth or span: longest chain of sequential dependencies best possible running time on an unlimited number of processors
claims:
1) easier to think about algorithms based on work and depth than to use running time on machine with P processors (e.g. PRAM)
2) work and depth predict running time on various different machines
(at least in the abstract)

\section*{work}

\section*{on a sequential machine = sequential time}
but can maybe be shared among multiple processors

\section*{Work w}
on a sequential machine \(=\) sequential time
but can maybe be shared among multiple processors

Evenly shared work on \#proc processors would take (about) w/\#proc time

\section*{Work w}
on a sequential machine \(=\) sequential time
but can maybe be shared among multiple processors

Evenly shared work on \#proc processors would take (about) w/\#proc time perfect speedup

\section*{Span s}
(or depth)

Allows analysis of extent to which work can be shared among processors

\section*{Span s}
(or depth)

Allows analysis of extent to which work can be shared among processors
without resorting to details of machines, and how work is distributed over processors

\section*{scheduler}

Assume a "reasonable" scheduler

A greedy scheduler guarantees that no processor will be idle (= not working on part of the computation) if there is work remaining to do

\section*{scheduler}

Assume a "reasonable" scheduler

A greedy scheduler guarantees that no processor will be idle (= not working on part of the computation) if there is work remaining to do

Then runtime <= (work / \#proc) + span

\section*{runtime <= (work / \#proc) + span}

If the first term dominates, then we are getting near perfect speedup (within a factor of 2 )

Define

Parallelism = work / span

Number of processors for which the two terms are equal Gives rough upper bound on number of processors can use effectively

\section*{Part 1: simple language based performance model}

\section*{Call-by-value \(\lambda\)-calculus}
\[
\begin{gathered}
\lambda x . e \Downarrow \lambda x \cdot e \\
\frac{e_{1} \Downarrow \lambda x . e \quad e_{2} \Downarrow v \quad e[v / x] \Downarrow v^{\prime}}{e_{1} e_{2} \Downarrow v^{\prime}}(\mathrm{APP})
\end{gathered}
\]

\section*{The Parallel \(\lambda\)-calculus: cost model}
\[
e \Downarrow v ; w, d
\]

Reads: expression \(e\) evaluates to \(v\) with work \(w\) and span \(d\).
- Work (W): sequential work
- Span (D): parallel depth

\section*{The Parallel \(\lambda\)-calculus: cost model}
\[
\begin{aligned}
& \lambda x . \mathrm{e} \Downarrow \lambda x . \mathrm{e} ;[11 \\
& \frac{e_{1} \Downarrow \lambda x \cdot e ; w_{1} d_{1} e_{2} \Downarrow v ; w_{2}, d_{2} e[v / x] \Downarrow v^{\prime} ; w_{3} / d_{3}}{e_{1} e_{2} \Downarrow v^{\prime} ; 1+w_{1}+w_{2}+w_{3}, 1+\max \left(d_{1}, d_{2}\right)+d_{3}}(\mathrm{APP})
\end{aligned}
\]

Work adds
Span adds sequentially, and max in parallel


\section*{The Parallel \(\lambda\)-calculus cost model}
\[
\begin{gathered}
\lambda x . \mathrm{e} \Downarrow \lambda x . \mathrm{e} ; 1,1 \\
\frac{e_{1} \Downarrow \lambda x . e ; w_{1}, d_{1} \quad e_{2} \Downarrow v ; w_{2}, d_{2} \quad e[v / x] \Downarrow v^{\prime} ; w_{3}, d_{3}}{e_{1} e_{2} \Downarrow v^{\prime} ; 1+w_{1}+w_{2}+w_{3}, 1+\max \left(d_{1}, d_{2}\right)+d_{3}} \quad(\mathrm{APP}) \\
c \Downarrow c ; 1,1 \quad(\mathrm{CONST}) \\
\frac{e_{1} \Downarrow c ; w_{1}, d_{1} \quad e_{2} \Downarrow v ; w_{2}, d_{2} \quad \delta(c, v) \Downarrow v^{\prime}}{e_{1} e_{2} \Downarrow v^{\prime} ; 1+w_{1}+w_{2}, 1+\max \left(d_{1}, d_{2}\right)} \quad \text { (APPC) } \\
c_{n}=0, \cdots, n,+,+_{0}, \cdots,+_{\mathrm{n}},<,<_{0}, \cdots,<_{\mathrm{n}}, \times, \times_{0}, \cdots, \times_{\mathrm{n}}, \cdots \text { (constants) }
\end{gathered}
\]

\section*{Adding Functional Arrays: NESL}
\[
\begin{aligned}
& \qquad\left\{e_{1}: x \text { in } e_{2} \mid e_{3}\right\} \\
& \frac{e^{\prime}\left[v_{i} / x\right] \Downarrow v_{i}^{\prime} ; w_{i}, d_{i} \quad i \in\{1 \ldots n\}}{\left\{e^{\prime}: x \text { in }\left[v_{1} \ldots v_{n}\right]\right\} \Downarrow\left[v_{1}^{\prime} \ldots v_{n}^{\prime}\right] ; 1+\sum_{i=1}^{n} w_{i}, 1+\max _{i=1}^{|v|} d_{i}} \\
& \text { Primitives: } \\
& <-: \text { 'a seq * (int,'a) seq }->\text { 'a seq } \\
& \text { • [g,c,a,p]<- [(0,d),(2,f),(0,i)]} \\
& \quad[\mathbf{i}, \mathbf{c}, \mathbf{f}, \mathrm{p}] \\
& \text { elt, index, length }
\end{aligned}
\]

\section*{Adding Functional Arrays: NESL}
\[
\left\{e_{1}: x \text { in } e_{2} \mid e_{3}\right\}
\]
```

Blelloch:
programming based cost models could change the way people think about
costs and open door for other kinds of abstract costs
doing it in terms of machines.... "that's so last century"
<- : `a seq * (int,'a) seq -> `a seq

- [g,c,a,p] <- [(0,d),(2,f),(0,i)]
[i,c,f,p]
elt, index, length

```
    [ICFP95]

\title{
The Second Half: \\ Provable Implementation Bounds
}

Theorem [FPCA95]:If \(e \Downarrow v ; w, d\) then \(v\) can be calculated from \(e\) on a CREW PRAM with p processors in \(o\left(\frac{w}{p}+d \log p\right)\) time.

Can't really do better than: \(\max \left(\frac{w}{p}, d\right)\)
If \(w / p>d \log p\) then "work dominates"
We refer to \(w / d\) as the parallelism.
(Typo fixed by MS based on the video)

\section*{Brent's lemma}

If a computation can be performed in \(t\) steps with \(q\) operations on a parallel computer (formally, a PRAM) with an unbounded number of processors, then the computation can be performed in \(t+(q-t) / p\) steps with \(p\) processors
http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf

\section*{Back to our scan}

oblivious or data independent computation
\(N=2^{n}\) inputs, work of dot is 1
work = ?
depth \(=\) ?
and bitonic sort?

\section*{Quicksort}
```

function Quicksort(A) = if (\#A < 2) then A else
let pivot = A[\#A/2];
lesser = {e in A| e< pivot};
equal ={e in A| e == pivot};
greater = {e in A| e > pivot};
result = {quicksort(v): v in [lesser,greater]};
in result[0] ++ equal ++ result[1];

```

Analysis in ICFP10 video gives depth \(=\mathrm{O}(\log \mathrm{N})\) work \(=\mathrm{O}(\mathrm{N} \log \mathrm{N})\)

\section*{Quicksort}
```

function Quicksort(A) = if (\#A < 2) then A else
let pivot = A[\#A/2];
lesser = {e in A| e< pivot};
equal = {e in A| e == pivot};
greater = {e in A| e > pivot};
result = {quicksort(v): v in [lesser,greater]};
in result[0] ++ equal ++ result[1];

```

Analysis in ICFP10 video gives depth \(=\mathrm{O}(\log \mathrm{N})\) work \(=\mathrm{O}(\mathrm{N} \log \mathrm{N})\)
(The depth is improved over the example with trees, due to the addition of parallel arrays as primitive.)

\section*{From the NESL quick reference}

Basic Sequence Functions
Basic Operations Description
\#a Length of a
a[i] ith element of a
\(\operatorname{dist}(a, n) \quad\) Create sequence of length \(n\) with a in each element.
zip(a,b) Elementwise zip two sequences together into a sequence of pairs. [s:e] Create sequence of integers from s to e (not inclusive of e) [s:e:d] Same as [s:e] but with a stride d.

\section*{Scans} plus_scan(a) min_scan(a) max_scan(a) or_scan(a) and_scan(a)

Execute a scan on a using the + operator
Execute a scan on a using the minimum operator
Execute a scan on a using the maximum operator
Execute a scan on a using the or operator
Execute a scan on a using the and operator

Work Depth
\(\mathrm{O}(1) \quad \mathrm{O}(1)\)
\(\mathrm{O}(1) \quad \mathrm{O}(1)\)
\(O(n) \quad O(1)\)
\(O(n) \quad O(1)\)
\(\mathrm{O}(\mathrm{e}-\mathrm{s}) \quad \mathrm{O}(1)\)
\(\mathrm{O}((\mathrm{e}-\mathrm{s}) / \mathrm{d}) \mathrm{O}(1)\)
\(O(n) \quad O(\log n)\)

\title{
NESL : what more should be done?
}

Take account of LOCALITY of data and account for communication costs (Blelloch has been working on this.)

Deal with exceptions and randomness

\section*{Data Parallel Haskell (DPH) intentions}

NESL was a seminal breakthrough but, fifteen years later it remains largely un-exploited. Our goal is to adopt the key insights of NESL, embody them in a modern, widely-used functional programming language, namely Haskell, and implement them in a state-of-theart Haskell compiler (GHC). The resulting system, Data Parallel Haskell, will make nested data parallelism available to real users.

Doing so is not straightforward. NESL a first-order language, has very few data types, was focused entirely on nested data parallelism, and its implementation is an interpreter. Haskell is a higher-order language with an extremely rich type system; it already includes several other sorts of parallel execution; and its implementation is a compiler.

\section*{NESL also influenced}

The Java 8 streams that you saw on Monday!!

Intel Array Building Blocks (ArBB)
That has been retired, but ideas are reappearing as \(C / C++\) extensions

Collections seems to encourage a functional style even in non functional languages (remember Backus' paper from first lecture)

\section*{Summary}

Programming-based cost models are (according to Blelloch) MUCH BETTER than machine-based models

They open the door to other kinds of abstract costs than just work, depth, space ...

There is fun to be had with parallel functional algorithms (especially as the Algorithms community is still struggling to agree on useful models for use In analysing parallel algorithms).

\section*{End}

\section*{parentheses matching}

For each index, return the index of the matching parenthesis
```

function parentheses_match(string) =
let
depth = plus_scan({if c==`(then 1 else -1 : c in string}); depth = {d + (if c==`(then 1 else 0): c in string; d in depth};
rnk = permute([0:\#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);

```
\[
\begin{aligned}
& \text { ( ) ( ( ) ( ) ) ( ( ( ) ) ) } \\
& \begin{array}{llllllllllll}
1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 \\
-1 & -1
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \text { () ( () () ) ( ( ( ) ) ) } \\
& \begin{array}{ccccccccccccc}
1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1
\end{array} \text {-1 } \\
& \begin{array}{c}
\substack{\text { prescan } \\
(+)} \\
\hline
\end{array}
\end{aligned}
\]
\[
\left.\begin{array}{ccccccccccccc} 
& ( & ( & ( & ) & ( & ) & 1 & ( & ( & ) & ) \\
1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 \\
-1
\end{array}\right)
\]
\[
\left.\begin{array}{llllllllllllll} 
& 1 & ( & ( & ) & ( & ) & ( & ( & ( & ) & ) & \\
1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 \\
\\
0 & 1 & 0 & 1 & 2 & 1 & 2 & 1 & 0 & 1 & 2 & 3 & 2 & 1 \\
1 & 1 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 3 & 3 & 2 & 1
\end{array}\right] \text { depth }
\]
\[
\begin{array}{llllllllllllll} 
& \text { ) } & ( & ( & ) & ( & ) & ) & ( & ( & ( & ) & ) & \text { string } \\
1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 \\
0 & 1 & 0 & 1 & 2 & 1 & 2 & 1 & 0 & 1 & 2 & 3 & 2 & 1
\end{array}
\]
\[
\begin{array}{lllllllllllllll}
1 & 1 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 3 & 3 & 2 & 1 & \text { depth }
\end{array}
\]
\[
01226789634101213115 \text { rank(depth) }
\]
\[
\left.\begin{array}{cccccccccccccc} 
& 1 & ( & ( & ) & ( & ) & ) & ( & ( & ( & ) & ) & \text { string } \\
1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1
\end{array}\right]
\]
\[
\begin{array}{lllllllllllllll}
( & ) & ( & ( & ) & ( & ) & ) & ( & ( & ( & ) & ) & ) & \text { string } \\
1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & \\
0 & 1 & 0 & 1 & 2 & 1 & 2 & 1 & 0 & 1 & 2 & 3 & 2 & 1 & \\
1 & 1 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 3 & 3 & 2 & 1 & \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & \text { depth } \\
0 & 1 & 2 & 6 & 7 & 8 & 9 & 3 & 4 & 10 & 12 & 13 & 11 & 5 & \begin{array}{c}
\text { [\#string] } \\
\text { rank(depth) }
\end{array} \\
0 & 1 & 2 & 7 & 8 & 13 & 3 & 4 & 5 & 0 & 0 & 1 & & & \begin{array}{c}
\text { permute } \\
\text { ([0:\#string),rank(depth)); }
\end{array}
\end{array}
\]
\[
\begin{array}{lllllllllllllll}
( & ) & ( & ( & ) & ( & ) & ) & ( & ( & ( & ) & ) & ) & \text { string } \\
1 & 1 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 3 & 3 & 2 & 1 & \text { depth } \\
1 & 1 & & & & & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & \text { [0:\#string] } \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & \\
0 & 1 & 2 & 6 & 7 & 8 & 9 & 3 & 4 & 10 & 12 & 13 & 11 & 5 & \text { rank(depth) } \\
0 & 1 & 2 & 7 & 8 & 13 & 3 & 4 & 5 & 6 & 9 & 12 & 10 & 11 & \text { rnk } \\
\times & X & & & & & & & & 11 & \\
1 & 0 & 7 & 2 & 13 & 8 & 4 & 3 & 6 & 5 & 2 & 9 & 11 & \text { ret }
\end{array}
\]
\[
\begin{array}{lllllllllllllll}
( & ) & ( & ( & ) & ( & ) & ) & ( & ( & ( & ) & ) & \text { string } \\
1 & 1 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 3 & 3 & 2 & 1 & \text { depth } \\
0 & 1 & 2 & 6 & 7 & 8 & 9 & 3 & 4 & 10 & 12 & 13 & 11 & 5 & \text { rank(depth) } \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & \text { [0:\#string] } \\
0 & 1 & 2 & 7 & 8 & 13 & 3 & 4 & 5 & 6 & 9 & 12 & 10 & 11 & \text { rnk } \\
X & X & & & & & & & & & \\
1 & 0 & 7 & 2 & 13 & 8 & 4 & 3 & 6 & & & & &
\end{array}
\]
\[
\begin{array}{lllllllllllllll} 
& 1 & ( & ( & ) & ( & ) & ) & ( & ( & ( & ) & ) & \text { string } \\
1 & 1 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 3 & 3 & 2 & 1 & \text { depth } \\
0 & 1 & 2 & 6 & 7 & 8 & 9 & 3 & 4 & 10 & 12 & 13 & 11 & 5 & \text { rank(depth) } \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & \text { [0:\#string] } \\
1 & 0 & & & 1 & & & & & & & & & & \\
1 & 0 & \\
0 & 1 & 2 & 7 & 8 & 13 & 3 & 4 & 5 & 6 & 9 & 12 & 10 & 11 & \text { ret } \\
1 & 0 & 7 & 4 & 3 & 6 & 5 & 2 & 13 & 12 & 11 & 10 & 9 & 8 & \\
1 & \text { rnk }
\end{array}
\]
\[
\left.\begin{array}{cccccccccccccc}
( & ) & ( & ( & ) & ( & ) & ) & ( & ( & ( & ) & ) & \text { string } \\
1 & 1 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 3 & 3 & 2 & 1
\end{array}\right] \text { depth } \quad \text { (dank(depth) }
\]
```

