
Chapter 7: Functional Programming Languages

Aarne Ranta

Slides for the book ”Implementing Programming Languages. An

Introduction to Compilers and Interpreters”, College Publications,

2012.

Fun: a language that is much simpler but in many ways more powerful

than an imperative language.

A fragment of Haskell, with a grammar that has less than 15 rules.

But there are conceptual challenges

• recursion

• call by name

• closures

• polymorphic type inference

Concepts and tools needed for Assignment 5.

Programming paradigms

Imperative, a.k.a. procedural: a program is a series of statements

that affect a state.

Functional: a program is just an expression.

• executing a program is just evaluation

• no state is needed

But also imperative programs evaluate expressions. Thus functional

programming only uses a subset of what imperative programs use.

Example of a functional program

In Haskell, and also in Assignment 5:

doub x = x + x ;

twice f x = f (f x) ;

quadruple = twice doub ;

main = twice quadruple 2 ;

A program is a sequence of function definitions.

main prints an integer (in Haskell, it is more general).

The syntax of function applications

Haskell: just put the function and its arguments one after the other,

f x y z

C (and ordinary mathematics), use parentheses and commas,

f(x, y, z)

Walk through the computation of main

main

= twice quadruple 2

= quadruple (quadruple 2)

= twice doub (twice doub 2)

= doub (doub (doub (doub 2)))

= doub (doub (doub (2 + 2)))

= doub (doub (doub 4))

= doub (doub (4 + 4))

= doub (doub 8)

= doub (8 + 8)

= doub 16

= 16 + 16

= 32

At each step, we replace some part of the expression by its definition,
or variables by their actual arguments.

The replacement operation is called substitution.

First-order functions

The doub function can be defined in C and Java as well:

// doub x = x + x

int doub (int x)

{

return x + x ;

}

But this mechanism is restricted to what is called first-order func-

tions: the arguments cannot themselves be functions.

Second-order functions

Possible in C++ (as in Haskell): take functions as arguments, as the

twice function does

// twice f x = f (f x)

int twice(int f (int n), int x)

{

return f(f(x)) ;

}

Functions as values

In a functional language, functions are first-class citizens, just like
numbers:

• function expressions have values even without arguments
• functions can be arguments of functions
• functions can be return values

In C++, a function cannot be a return value:

// quadruple = twice doub

// not possible in V++:

(int f (int x)) quadruple()

{

return twice(doub) ;

}

We must pass an additional argument, which enables quadruple to

return an integer and not a function:

int quadruple(int x)

{

return twice(doub, x) ;

}

This corresponds to another definition in Haskell:

quadruple x = twice doub x

This definition has the same meaning as the one without x.

Function types

We write a two-place integer functionmax

max : Int -> Int -> Int

(Haskell uses a double colon :: for typing, but we stick to a single :.)

The notation is right-associative, and hence equivalent to

max : Int -> (Int -> Int)

The typing rule for function applications is:

Γ ` f : A→ B Γ ` a : A

Γ ` f a : B

Partial application

The typing rule permits

max 4 : Int -> Int

This is a function that returns the maximum of its argument and 4.

Notice

Application is left-associative: max 4 5 is the same as (max 4) 5.

The tuple type

One could also force total application by using a tuple of arguments:

maxt : (Int * Int) -> Int

Tuples are a type of its own, with the following typing rule:

Γ ` a : A Γ ` b : B

Γ ` (a, b) : A*B

Currying

An equivalence between functions over tuples and two-place functions:

(A ∗B)→ C ⇐⇒ A→ B → C

Converting the first to the second is called currying, with reference to

Haskell B. Curry.

Currying simplifies the semantics and implementation of programming

languages: it is enough to work with one-place functions!

Anonymous functions

In imperative languages, functions must be explicitly defined and given

names.

In a functional language, any expression can be turned into ananonymous

functions, by lambda abstraction:

timesNine = twice (\x -> x + x + x)

Syntactically, a lambda abstract is an expression

λx.e

(using λ instead of \). The typing rule for lambda abstracts.

Γ, x : A ` e : B

Γ ` λx.e : A→ B

Function definitions as syntactic sugar

It is enough to have definitions of constance, because a function defi-

nition

f x1 . . . xn = e

can be expressed as the definition of a constant as a lambda abstract,

f = λx1. . . . λxn.e

Also this simplifies the implementation: the environment need only

map identifiers to types (in the type checker) or values (in the inter-

preter).

As C++ has no anonymous functions, we cannot write timesNine di-

rectly, but have to define a named tripling function first:

// triple x = x + x + x

int triple(int x)

{

return x + x + x ;

}

// timesNine = twice triple

int timesNine(int x)

{

return twice(triple, x) ;

}

But there is an experimental Lambda Library in C++ permitting

anonymous functions.

Our language

We can start with only four expression forms:

Exp ::=

Ident -- variables, constants

| Integer -- integer literals

| "(" "\" Ident "->" Exp ")" -- abstractions

| "(" Exp Exp ")" -- applications

Operational semantics

Judgements of the usual form,

γ ` e ⇓ v

read, ”in the environment γ, the expression e evaluates to the value

v”.

Notice that evaluation cannot change the environment!

Thus we have a purely functional language, a language without side

effects.

The environment is a set of values assigned to variables,

x := v, y := w, . . .

Values

We need to be more general now, because we need function as values.

The simplest view:

• values are expressions

• evaluation converts an expression to another expression

• evaluation stops when it cannot proceed further

The resulting expression is often simpler, as in

2 + 3 ∗ 8 ⇓ 26

But it can also be more complex, as in

replicate 20 1 ⇓ [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]

What is a value

2 + 3 * 8

is not a value, because the evaluation can proceed.

231 − 1

can be more interesting a value than 2147483647 as an answer, be-
cause it is more informative.

2 + 3 * x

is a value, in the sense that we cannot take it any further, because
known what x is.

In another sense, it isn’t: we were expecting to get a number, but we
don’t have one yet. We must first give a value to x and then perform
multiplication and addition.

Free variables

A value may not contain free variables, which could get any values.

Bound variables are different. They are the ones appearing in lambda
bindings.

The precise definition of the set free, free variables of an expression:

free(x) = {x}
free(i) = {}
free(f a) = free(f) ∪ free(a)
free(λx.b) = free(b)− {x}

An expression that has no free variables (i.e. free(e) = {}) is a closed
expression.

An expression that does have free variables is an open expression.

Closures

Notice: the closed expressions are those where all variables are bound

by lambdas.

Special case: expressions with no variables.

Approximation of values: closed expressions.

In addition to lambda, it makes sense to close an expression by just

giving values of its free variables. For instance,

(2 + 3 * x){x := 8}

The general form: a closure is an expression e with an environmen γ:

e{γ}

Values revisited

We will use two kinds of values:

• integers

• closures of lambda abstracts

Special case: closed lambda abstract (with an empty closure).

Operational semantics

Variables:

γ ` x ⇓ v
x := v is in γ

Integer literals:

γ ` i ⇓ i

Lambda abstracts:

γ ` (λx.e) ⇓ (λx.e){γ}

Function applications:

γ ` f ⇓ (λx.e){δ} γ ` a ⇓ u δ, x := u ` e ⇓ v
γ ` (f a) ⇓ v

(That’s all!)

Some explanations

Abstractions: the body of the lambda abstract may contain variables

than the one bound by the lambda. These variables get their values

in the environment.

Applications: this comes out as a modification of the imperative rule

in Chapter 5,

γ ` a ⇓ u x := u ` s1 . . . sn ⇓ v
γ ` f(a) ⇓ v

if V f(T x){s1 . . . sn} in γ

Modifications:

• now enough to consider functions with one argument

• evaluation has no side effects now

• the function body: in the imperative language, it is a sequence

of statements, s1 . . . sn; in the functional language, it is a lambda

abstraction body e, which is an expression.

• the function f : in the imperative language, it is always an explicitly

defined function symbol; in the functional language, it can be any

expression (for instance, a lambda abstract or an application).

Thus the evaluation of f is not simply a look-up in the function table.

But we can just replace the look-up by a step of evaluating the expres-

sion f . This evaluation results in a closure, with a lambda abstract

λx.e and an environment δ. Then (f a) is computed by evaluating e in

an environment where the variable x is set to the value of the argument

a.

Example

Assume the function definition

doub x = x + x

which means the same as

doub = \x -> x + x

Compute doub 4 as follows:

` doub ⇓ (λx.x+ x){} ` 4 ⇓ 4 x := 4 ` x+ x ⇓ 8

` (doub4) ⇓ 8

The applied function has no free variables. But this is just a limiting

case.

Example showing the need of closures

A two-place function,

plus x y = x + y

Evaluation of the expression plus 3 4 (i.e. ((plus 3) 4)):

` plus ⇓ (λx.λy.x+ y){} ` 3 ⇓ 3 x := 3 ` (λy.x+ y) ⇓ (λy.x+ y){x := 3}
` (plus3) ⇓ (λy.x+ y){x := 3} ` 4 ⇓ 4 x := 3, y := 4 ` x+ y ⇓ 7

` ((plus3) 4) ⇓ 7

Call by value vs. call by name

Call by value: evaluate the argument first, then the body (as above):

γ ` f ⇓ (λx.e){δ} γ ` a ⇓ u δ, x := u ` e ⇓ v
γ ` (f a) ⇓ v

Call by name: the body with unevaluated argument:

γ ` f ⇓ (λx→ e){δ} δ, x := a{γ} ` e ⇓ v
γ ` (f a) ⇓ v

Notice that γ is the proper way to close the expression a, because it is

the environment in which a would be evaluated if we were performing

call by value.

Examples

The difference is enorbous! Consider

infinite = 1 + infinite

first x y = x

main = first 5 infinite

With call by value,

main

= first 5 infinite

= (\x -> \y -> x) 5 (1 + infinite)

= (\y -> 5) (1 + infinite)

= (\y -> 5) (2 + infinite)

...

which leads to non-termination. Even though the function first ig-
nores its second argument, call-by-value requires this argument to be
evaluated.

With call by name,

main

= first 5 infinite

= (\x -> \y -> x) 5 infinite

= (\y -> 5) infinite

= 5

There is no attempt to evaluate the second argument, because it is

not needed by first.

Call-by-value and call-by-name are just two possible orders. But call-

by-name has the property that it is ”the most terminating” one: if there

is any order that makes the evaluation of an expression terminate, then

call-by-name is such an order.

Disadvantages of call by name

It may lead to some expressions getting evaluated many times: once
for each time the argument is used.

Example:

doub x = x + x

doub (doub 8)

= doub 8 + doub 8 -- by name

= 8 + 8 + 8 + 8

= 32

doub (doub 8)

= doub 16 -- by value

= 16 + 16

= 32

Call by need

An intermediate strategy, used in Haskell.

As in call by name, the expression is not evaluated when it is put to

the environment.

But when the value is needed for the first time, the result of evaluation

is saved in the environment, and the next look-up of the variable will

not need to compute it again.

To make this possible, evaluation changes the environment - just like

in imperative languages.

Implementing an interpreter: the language

An extended language with two primitive forms of expressions: infix

operations and if-then-else.

Exp3 ::= Ident

Exp3 ::= Integer

Exp2 ::= Exp2 Exp3

Exp1 ::= Exp1 "+" Exp2

Exp1 ::= Exp1 "-" Exp2

Exp1 ::= Exp1 "<" Exp2

Exp ::= "if" Exp1 "then" Exp1 "else" Exp

Exp ::= "\\" Ident "->" Exp

A program is a sequence of function definitions, each of which has the

form

f x1 . . . xn = e ;

An example program

The function pow defines powers of 2 by recursion.

doub x = x + x ;

pow x = if (x < 1) then 1 else doub (pow (x-1)) ;

main = pow 30 ;

Execution of programs

Evaluate the expression main.

Environment: all functions mapped to their definitions.

Each definition looks like a closure, with an empty environment. For
instance, the example program above creates the following environ-
ment:

doub := (\x -> x + x){}

pow := (\x -> if (x < 1) then 1 else doub (pow (x-1))){}

main := (pow 30){}

Notice the empty environments {} in the values (closures) of each
function.

(Putting the function definitions in these environments would be im-
possible: just try this with the recursive function pow!)

Operations on environments

Val lookup (Ident x,Env γ)
Env update (Env γ, Ident x,Val v)

The lookup function has to implement the overshadowing of identi-

fiers:

• a variable overshadows a function symbol;

• an inner variable overshadows an outer variable.

The latter follows from the simple rule that, in λx→ e, the free occur-

rences of x get bound in e.

Quiz: what is the value of

(\x -> \x -> x + x) 2 3

Answer: in the expression

\x -> \x -> x + x

it is the second lambda that binds both variables in x + x. We get

(\x -> \x -> x + x) 2 3

= ((\x -> x + x){x := 2}) 3

= (\x -> x + x) 3

= 3 + 3

= 6

Syntax-directed interpreter code

Integer literal:

eval(γ, i) :
return i

Alternatively, we can return i{}, if we uniformly want closures as values.

Variable expressions:

eval(γ, x) :
e{δ} := lookup(γ, x)
eval(〈functions(γ), δ〉, e)

We split the environment into a pair 〈functions, variables〉, with sepa-
rate storage for functions and variables.

Arithmetic operations: reduced to integer operations in the implemen-

tation language:

eval(γ, a+ b) :

u := eval(γ, a)

v := eval(γ, b)

return u+ v

< has a similar rule, returning 1 if the comparison is true, 0 if it is

false.

Conditionals: interpreted lazily, even if call by value is the general

strategy:

eval(γ, if c then a else b) :

u := eval(γ, c)

if u = 1

eval(γ, a)

else

eval(γ, b)

Abstractions: return closures with the variables of the current environ-

ment,

eval(γ, λx.b) :

return (λx.b){variables(γ)}

Notice that we take only the variables of the environment into the

closure, not the function symbols.

Application is the most complex case.

A general rule for both call by value and call by name. The decision

is made in just one point: when deciding what value to use for the

bound variable when evaluating the body.

eval(γ, (f a)) :

(λx.b){δ} := eval(γ, f)

if call by value

u := eval(γ, a)

else

u := a{variables(γ)}
eval(update(〈functions(γ), δ〉, x, u), b)

Implementing an interpreter

Less than 100 lines of Haskell code or a little more Java code.

The interpreter can be made parametrized on evaluation strategy,

which is passed as a flag when the interpreter is called.

Type checking functional languages*

Our language has a type system known as the simply typed lambda

calculus.

Two kinds of types:

• basic types, such as int;

• function types A→ B, where A and B are types.

The power comes from the unconstrained generation of function types

from any other types:

int -> int

(int -> int) -> int

int -> (int -> int)

((int -> int) -> int) -> int

Type checking

Abstraction rule:
Γ, x : A ` b : B

Γ ` λx.b : A→ B

Type checking is easy:

check(Γ, λx.b, A→ B) :

check(extend(Γ, x, A), b, B)

Type inference

But what about type inference? Example:

\x -> x

has infinitely many types:

int -> int

(int -> int) -> (int -> int)

(int -> int -> int) -> (int -> int -> int)

In fact, it has all types of the form

A -> A

Hence it is impossible to do type inference for all expressions - if we
expect a unique type.

Typed abstraction

One way to solve the type inference problem is to include type infor-

mation in syntax:

λx : t.b

Polymorphism*

But a more common solution is a polymorphic type system: one

and the same expression can have many types, usually depending on a

type variable.

Introduced in ML in the 1970’s, inherited by Haskell in the 1990’s.

Inspired the template system C and the generics of Java.

Templates and generics

Simplest possible example: the identity function, in C++

// id : A -> A, id = \x -> x

template<class A> A id(A x)

{

return x ;

}

and in Java

// id : A -> A, id = \x -> x

public static <A> A id(A x)

{

return x ;

}

In both cases, A is a type variable. (C++ and Java use capital letters,
Haskell uses small letters.)

The most general type

In C++ and Java, calls to polymorphic functions must indicate the
actual types. This makes type inference easy.

In ML and Haskell, this is not required. But type inference works even
then!

Hindley-Milner polymorphism has an algorithm that computes the

most general type. Examples:

(\x -> x) : a -> a

(\x -> \y -> x) : a -> b -> a

(\f -> \x -> f (f x)) : (a -> a) -> a -> a

(\x -> x + x) : int -> int

Notice: different variables mean more generality than the same vari-
able. For example, a -> b is more general than a -> a.

How to infer the most general type

Start by introducing a variable t for the type of the expression:

(\f -> \x -> f (f x)) : t

Since the expression is a double abstraction, t must be a function type:

t = a -> b -> c

The body of the expression must of course obey this type:

f (f x) : c

Since f is used as a function here, it must have a function type:

f : d -> e

But since f is the variable bound by the first lambda, we also have

f : a

and hence,

a = d -> e

Thus the result of applying f must have type e. But it must also have

type c, because f (f x) : c. What is more, it must also have type d,

because f can be applied to its own result. Hence

c = e = d

The type of x is on one hand b (as the second abstracted variable),

on the other hand d (because f applies to x). Hence

c = e = b = d

and, since a = d -> e,

a = d -> d

We can now conclude with

t = (d -> d) -> d -> d

as the most general type.

Mechanizing type inference

The procedure above was completely heuristic - a little bit like solving
a Sudoku.

But there is a mechanical algorithm, using unification - a general
method for solving a set of equations.

Unification takes two types (with variables) and returns a substitution,
mapping type variables to types.

We will define the main type inference

〈Subst,Type〉 infer(Exp e)

and the auxiliary function finding most general unifier,

Subst mgu (Type t,Type u)

Substitution vs. context

Substitution: type variables to types.

Context: expression variables to types (as in Chapter 4).

We will keep the context implicit in the pseudocode, accessible by the
functions

Type lookup (Ident x) // look up type of variable in context

Void extend (Ident x, Type t) // put new variable to context

Void free (Ident x) // remove variable from context

We also need, in the course of type inference

Ident fresh () // generate a new type variable

Applying a substitution to a type

We write

tγ

for applying γ to t, which means replacing the type variables in t with

their values given in γ.

Example:

(a -> c -> d){a:= d -> d, c:=d, b:=d} ⇓ (d -> d) -> d -> d

(applied at one point in the type inference example above)

Code for type inference

Constants and variables are simple, and return the empty substitution

{}:

infer(i) :

return 〈{}, Int〉

infer(x) :

t := lookup(x)

return 〈{}, t〉

Lambda abstracts:

infer(λx.b) :

a := fresh() // variable for the type of x

extend(x, a)

〈γ, t〉 := infer(b) // infer the type of the body

free(x) // the new variable no more in scope

return 〈γ, aγ → t〉

Application: two slides later.

Example

We can now infer the type of the identity function mechanically:

infer(λx.x) :

a := fresh()

extend(x, a)

〈{}, a〉 := infer(x) // in context x : a

return 〈{}, a{} → a〉

By applying the empty substitution, we get the final type a→ a.

Type inference for function application

infer(f a) :
〈γ1, t1〉 := infer(f) // infer type of function

〈γ2, t2〉 := infer(a) // infer type of argument

v := fresh() // variable for the return type

γ3 := mgu(t1γ2, t2 → v) // combine information

return 〈γ3 ◦ γ2 ◦ γ1, vγ3〉

All information is finally gathered in the composition of substitutions
γ3 ◦ γ2 ◦ γ1.

Similar to the usual composition of functions:

t(δ ◦ γ) = (tγ)δ

Defining unification

The function mgu takes two types and returns their most general

unifier.

This is a substitution γ that gives the same result when applied to any

of the two types:

t(mgu(t, u)) = u(mgu(t, u))

Of course, mgu can also fail, if the types are not unifiable.

Unification is defined by pattern matching on the type.

Subst mgu (Type t,Type u)

mgu(a1 → b1, a2 → b2) : // both are function types
γ1 := mgu(a1, a2)
γ2 := mgu(b1γ1, b2γ1)
return γ2 ◦ γ1

mgu(v, t) : // the first type is a type variable
if t = v

return {}
else if occurs(v, t)
fail (”occurs check”)

else
return {v := t}

mgu(t, v) : // the second type is a type variable
mgu(v, t)

mgu(t, u) : // other cases: succeeds only for equal types
if t = u

return {}
else
fail (”types not unifiable”)

When does unification fail?

1. If the types are syntactically different, e.g.

• Int vs. Double

• Int vs. a -> b

2. By occurs check: if the type variable v occurs in the type t, then

t and v are not unifiable.

• v vs. v → u

Without occurs check, we would get

{v := v → u}

which would need an ”infinite type” (. . . (v → u) . . .→ u)→ u

Another example

Type inference for function applications, with occurs check:

infer(λx.(x x)) :

a := fresh()

〈γ, t〉 := infer(x x) : // in context x : a

〈{}, a〉 := infer(x)

〈{}, a〉 := infer(x)

b := fresh()

γ := mgu(a, a→ b) :

fail (”occurs check”)

On the last line, mgu fails because of occurs check: a cannot unify

with a→ b.

Self-application

A function cannot be applied to itself: occurs check blocks

\x -> (x x)

Quiz: however, a ”self-application” is completely legal in

(\x -> x)(\x -> x)

Can you explain why?

