
Programming Language Technology

Exam, 24 August 2017 at 14.00–18.00 in M

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150, DIT229/230,
and TIN321.
Exam supervision: Andreas Abel (+46 31 772 1731), visits at 15:00 and 17:00.

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: Tuesday 12 September 2017 at 13.30 in room EDIT 8103 (past the CSE
lunchroom).

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following
constructs of a C-like imperative language: A program is a list of statements. Types are
int and bool. Statement constructs are:
• variable declarations (e.g. int x;), not multiple variables, no initial value
• expression statements (E;)
• while loops
• blocks: (possibly empty) lists of statements enclosed in braces

Expression constructs are:
• identifiers/variables
• integer literals
• post-increments of identifiers (x++)
• less-or-equal-than comparisons (E <= E ′)
• assignments of identifiers (x = E)

Less-or-equal is non-associative and binds stronger than assignment. Parentheses around
and expression are allowed and have the usual meaning. An example program would be:

int x; x = 0; while (x++ <= 9) {}

You can use the standard BNFC categories Integer and Ident as well as list short-hands,
and terminator, separator, and coercions rules. (10p)

1

SOLUTION:

Program. Prg ::= [Stm] ;

SDecl. Stm ::= Type Ident ";" ;

SExp. Stm ::= Exp ";" ;

SWhile. Stm ::= "while" "(" Exp ")" Stm ;

SBlock. Stm ::= "{" [Stm] "}" ;

terminator Stm "" ;

TInt. Type ::= "int" ;

TBool. Type ::= "bool" ;

EId. Exp1 ::= Ident ;

EInt. Exp1 ::= Integer ;

EPostIncr. Exp1 ::= Ident "++" ;

ELEq. Exp ::= Exp1 "<=" Exp1 ;

EAss. Exp ::= Ident "=" Exp ;

coercions Exp 1 ;

Question 2 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and lists of Ques-
tion 1. The typing environment must be made explicit. You can assume a type-
checking judgement for expressions.

Alternatively, you can write the type-checker in pseudo code or Haskell.

Please pay attention to scoping details; in particular, the program

while (0 <= 1) int x; x = 0;

should not pass your type checker! (5p)

SOLUTION: We use a judgement Γ ` s ⇒ Γ′ that expresses that statement s is
well-formed in context Γ and might introduce new declarations, resulting in context
Γ′.

A context Γ is a stack of blocks ∆, separated by a dot. Each block ∆ is a map from
variables x to types t. We write ∆, x:t for adding the binding x 7→ t to the map.
Duplicate declarations of the same variable in the same block are forbidden; with
x 6∈ ∆ we express that x is not bound in block ∆. We use a judgement Γ ` e : t,

2

which reads “in context Γ, expression e has type t”.

Γ.∆ ` SDecl t x⇒ (Γ.∆, x:t)
x 6∈ ∆

Γ ` e : t

Γ ` SExp e⇒ Γ

Γ ` e : bool Γ. ` s⇒ Γ.∆

Γ ` SWhile e s⇒ Γ

Γ. ` ss ⇒ Γ.∆

Γ ` SBlock ss ⇒ Γ

This judgement is extended to sequences of statements Γ ` ss ⇒ Γ′ by the following
rules:

Γ ` SNil⇒ Γ

Γ ` s⇒ Γ′ Γ′ ` ss ⇒ Γ′′

Γ ` SCons s ss ⇒ Γ′′

Alternative solution: Lists of statements are denoted by ss and ε is the empty
list. The judgement Γ ` ss reads “in context Γ, the sequence of statements ss is
well-formed”. Here, concrete syntax is used for the statements:

Γ ` ε
Γ.∆ ` e : t Γ.∆, x : t ` ss

Γ.∆ ` t x; ss
x 6∈ ∆

Γ ` e : t Γ ` ss

Γ ` e; ss

Γ ` e : bool Γ. ` s Γ ` ss
Γ ` while(e)s ss

Γ. ` ss Γ ` ss ′

Γ ` {ss}ss ′

Possible Haskell solution:

chkStm :: Stm -> StateT [Map Ident Type] Maybe ()

chkStm (SExp e) = do

chkExp e Nothing -- Check e is well-typed

chkStm (SDecl t x) = do

(delta : gamma) <- get -- Get context

guard $ Map.notMember x delta -- No duplicate binding!

put $ Map.insert x t delta : gamma -- Add binding

chkStm (SWhile e s) = do

chkExp e (Just TBool) -- Check e against bool

modify (Map.empty :) -- Push new block

chkStm s

modify tail -- Pop top block

chkStm (SBlock ss) = do

modify (Map.empty :) -- Push new block

mapM_ chkStm ss

modify tail -- Pop top block

2. Write syntax-directed interpretation rules for the expression forms of Question 1.
The environment must be made explicit, as well as all possible side effects.

Alternatively, you maybe write an interpeter in pseudo code or Haskell. (5p)

3

SOLUTION:

The judgement γ ` e ⇓ 〈v; γ′〉 reads “in environment γ, evaluation of the expression
e results in value v and environment γ′”.

γ ` EInt i ⇓ 〈i; γ〉 γ ` EVarx ⇓ 〈γ(x); γ〉

γ ` EPostIncrx ⇓ 〈γ(x); γ[x := γ(x) + 1]〉

γ ` e1 ⇓ 〈i1; γ1〉 γ1 ` e2 ⇓ 〈i2; γ2〉
γ ` ELEq e1 e2 ⇓ 〈i1 ≤ i2; γ2〉

γ ` e ⇓ 〈v; γ′〉
γ ` EAssx e ⇓ 〈v; γ′[x := v]〉

Question 3 (Compilation):

1. Write compilation schemes in pseudo code for each of the expression constructions in
Question 1 generating JVM (i.e. Jasmin assembler). It is not necessary to remember
exactly the names of the instructions – only what arguments they take and how
they work. (6p)

SOLUTION:

compile (EVar x) = do

a <- lookupVar x

emit (iload a) -- load value of x onto stack

compile (EInt i) = do

emit (ldc i) -- put i onto stack

compile (EAss x e) = do

compile e -- value of e is on stack

a <- lookupVar x

istore a -- store value

iload a -- put value back on stack

compile (EPostIncr x) = do

a <- lookupVar x

emit (iload a) -- load value of x onto stack

emit (dup) -- make second copy for increment procedure

emit (ldc 1) -- increment

emit (iadd)

emit (istore a) -- store incremented value;

-- non-incremented copy remains on stack

compile (EGEq e1 e2) = do

4

LDone <- newLabel

emit (ldc 1) -- push "true"

compile e1

compile e2

emit (if_icmple LDone) -- if less or equal, then done

emit (pop) -- remove "true"

emit (ldc 0) -- push "false"

emit (LDone:)

2. Give the small-step semantics of the JVM instructions you used in the compilation
schemes in part 1. Write the semantics in the form

i : (P, V, S) −→ (P ′, V ′, S ′)

where (P, V, S) are the program counter, variable store, and stack before execution
of instruction i, and (P ′, V ′, S ′) are the respective values after the execution. For
adjusting the program counter, you can assume that each instruction has size 1.
(6p)

SOLUTION:

ldc a : (P, V, S) −→ (P + 1, V, S.a)
iload x : (P, V, S) −→ (P + 1, V, S.V (x))
istore x : (P, V, S.a) −→ (P + 1, V [x:=a], S)
dup : (P, V, S.a) −→ (P + 1, V, S.a.a)
pop : (P, V, S.a) −→ (P + 1, V, S)
iadd : (P, V, S.a.b) −→ (P + 1, V, S.(a+ b))
if icmple L : (P, V, S.a.b) −→ (L, V, S) if a ≤ b
if icmple L : (P, V, S.a.b) −→ (P + 1, V, S) otherwise

5

Question 4 (Regular Languages): Company SaniSol develops showers and has
bought a water-proof robot from company RoboCRP for testing its newest shower mod-
els. The testing environment consists of two adjacent square rooms separated by a swing
door. Room 1 is empty, except for the swing door to room 2. Room 2 contains the shower
(and of course the swing door back to room 1). RoboCRP has programmed the test robot
with two actions.

a Move forward through the swing door and spin by 180◦. This action can be carried
out whenever the robot faces a door into another room.

b Take a shower, spinning by 360◦. This action can be carried out whenever the robot
is in a room with a shower.

If the robot is asked to perform an action it cannot carry out, it will explode according
to the RoboCRP SelfDestruct R© mechanism.

In the beginning, the robot is in room 1 facing the swing door to room 2. A valid
action sequence is a non-empty sequence of a and/or b actions that does not make the
robot explode and returns it to room 1 in the end. For example, the sequences abbba and
aaabbaaba are valid and aaa, ab, and ba are invalid.

1. Give a regular expression for valid action sequences. Demonstrate that your regular
expression accepts the two valid examples and rejects the three invalid ones. (5p)

2. Give a deterministic or non-deterministic automaton for recognizing valid action
sequences. Demonstrate that your automaton accepts the two valid examples and
rejects the three invalid ones. (5p)

SOLUTION:

1. For instance, r = a(b + aa)∗a; another solution would be (ab∗a)+. For the proofs
of acceptance, we use the compositional semantics of regular expressions. For the
proofs of rejectance, we use derivatives. Other demonstrations are possible.

(a) b+ aa accepts b, thus, (b+ aa)∗ accepts bbb, thus a(b+ aa)∗a accepts abbba.

(b) b+aa accepts both b and aa, thus, (b+aa)∗ accepts aabbaab, thus, a(b+aa)∗a
accepts aaabbaaba.

(c) r/ab = a(b+ aa)∗a/ab = (b+ aa)∗a/b = (b+ aa)∗a which does not contain the
empty word.

(d) r/aaa = a(b+ aa)∗a/aaa = (b+ aa)∗a/aa = (b+ aa)∗a which does not contain
the empty word.

(e) r/ba = a(b+ aa)∗a/ba = ∅ which does not contain the empty word.

2. A possible deterministic automaton uses four states S = {0, 1, 2, E} with start state
0 and accepting state 1 and the following transitions.

// 0
a //

b //

2
a //

b��
1

a
oo

booE

a,b

��

6

To demonstrate acceptance or rejectance, we simply run the automaton on the
input. We denote a run by the sequence of states the automaton goes through.

(a) abbba is accepted by run 022221.

(b) aaabbaaba is accepted by run 0212221221.

(c) ab leads to run 022 ending in a non-accepting state.

(d) aaa leads to run 0212 ending in a non-accepting state.

(e) ba leads to run 0EE ending in a non-accepting state. (Bye-bye, bot!)

Question 5 (Parsing): Consider the following LBNF-Grammar for arithmetical ex-
pressions (written in bnfc). The starting non-terminal is S.

Plus. S ::= S "+" P ; -- Sums

Product. S ::= P ;

Times. P ::= P "*" A ; -- Products

Atom. P ::= A ;

X. A ::= "x" ; -- Atoms

Y. A ::= "y" ;

Z. A ::= "z" ;

Parens. A ::= "(" S ")" ;

Step by step, trace the LR-parsing of the expression

x + y * z

showing how the stack and the input evolves and which actions are performed. For each
reduce action, mention the grammar rule used to reduce the stack. (8p)

SOLUTION: The actions are S (shift), R (reduce with rule), and Accept.

Stack . Input // Action(s) (rules)

. x + y * z // SR: "x" -> A (X)

A . + y * z // RR: A -> C -> D (Atom, Product)

D . + y * z // SSR: "y" -> A (Y)

D + A . * z // R: A -> C (Atom)

D + C . * z // SSR: "z" -> A (Z)

D + C * A // R: C * A -> C (Times)

D + C // R: D + C -> D (Plus)

D // Accept

7

Question 6 (Functional languages):

1. For lambda-calculus expressions we use the abstract grammar

e ::= n | x | λx→ e | e e

and for simple types t ::= N | t → t. Non-terminal x ranges over variable names
and n over non-negative integer constants 0, 1, etc.

For the following typing judgements Γ ` e : t, decide whether they are valid or not.
Your answer should be just “valid” or “not valid”.

(a) y : N→ N, f : N ` f y : N.

(b) y : (N→ N)→ N ` y (λx→ 1) : N.

(c) f : (N→ N)→ (N→ N) ` (λx→ f (x x)) (λx→ f (x x)) : N→ N.

(d) ` λx→ λy → (f x) y : N→ (N→ N).

(e) f : N→ N ` λx→ f (f x) : N→ N.

The usual rules for multiple-choice questions apply: For a correct answer you get
1 point, for a wrong answer −1 points. If you choose not to give an answer for a
judgement, you get 0 points for that judgement. Your final score will be between 0
and 5 points, a negative sum is rounded up to 0. (5p)

SOLUTION:

(a) not valid (f does not have a function type)

(b) valid

(c) not valid (self application x x is not typable)

(d) not valid (f is unbound)

(e) valid

2. Write a call-by-value interpreter for above lambda-calculus either with inference
rules, or in pseudo-code or Haskell. (5p)

SOLUTION: Values v are either integer literals or function closures 〈λx→ e; ρ〉
where environment ρ maps the free variable of e except x to values.

The evaluation judgement 〈e; ρ〉 ⇓ v is given inductively by the following rules.

〈n; ρ〉 ⇓ n 〈λx→ e; ρ〉 ⇓ 〈λx→ e; ρ〉 〈x; ρ〉 ⇓ ρ(x)

〈f ; ρ〉 ⇓ 〈λx→ e′; ρ′〉 〈e; ρ〉 ⇓ v 〈e′; ρ′[x:=v]〉 ⇓ w
〈f e; ρ〉 ⇓ w

8

SOLUTION: In Haskell:

-- Variables and expressions.

type Var = String

data Exp = EInt Integer | EVar Var | EAbs Var Exp | EApp Exp Exp

-- Values and environments.

data Val = VInt Integer | VClos Var Exp Env

type Env = [(Var,Val)]

-- Evaluation function (may not terminate).

eval :: Exp -> Env -> Maybe Val

eval e0 rho = case e0 of

EInt n -> return $ VInt n

EAbs x e -> return $ VClos x e rho

EVar x -> lookup x rho

EApp f e -> do

VClos x e’ rho’ <- eval f rho

v <- eval e rho

eval e’ $ (x,v):rho’

9

