Some abstract machines

Arithmetic expression

What we present is a very simplified version of the fundamental paper of McCarthy and Painter
on correctness of a compiler for arithmetic expressions (1967). The expressions are

e = constn|addee

and the semantics is
[const n] =n [add eg e1] = [eo] + [e1]

We define the instruction list (code) as
cd ::= LOAD n cd | ADD cd | HALT
and the compilation function is
comp (const n) cd = LOAD n ed ~ comp (add eg e1) cd = comp ey (comp ey (ADD cd))

The machine has then for state a pair cd, S where cd is a code and S is a stack of numbers. The
small step semantics for this machine is

ADD cd, ny:ng: S+ cd,(n; +mng): S LOAD ncd,S+cd,n: S

We can now state, and prove by induction on e

Theorem 0.1 For all expression e we have Ved S comp e cd, S —* cd, [e] : S

Krivine Abstract Machine

We define the terms (in de Bruijn notation) as
to=n| M|ttt

namely deBruijn index, or abstraction, or application.

A walue u is a pair tp of a term and an environment, where an environment p is a list of
values.

Krivine Abstract Machine has for states ¢ | p | S where tp is a value and S is a stack of
values. The small step semantics is

o (tp,v)|S—=t|p|S n+1|(uwv)|S—n|lv]|S

M lplu:Se=t|(up)]S

toti | p|S—=to|p]| (tip): S
So abstraction is “pop” while application is “push”.

