
Some abstract machines

Arithmetic expression

What we present is a very simplified version of the fundamental paper of McCarthy and Painter
on correctness of a compiler for arithmetic expressions (1967). The expressions are

e ::= const n | add e e

and the semantics is
[[const n]] = n [[add e0 e1]] = [[e0]] + [[e1]]

We define the instruction list (code) as

cd ::= LOAD n cd | ADD cd | HALT

and the compilation function is

comp (const n) cd = LOAD n cd comp (add e0 e1) cd = comp e1 (comp e0 (ADD cd))

The machine has then for state a pair cd, S where cd is a code and S is a stack of numbers. The
small step semantics for this machine is

ADD cd, n1 : n0 : S 7→ cd, (n1 + n0) : S LOAD n cd, S 7→ cd, n : S

We can now state, and prove by induction on e

Theorem 0.1 For all expression e we have ∀cd S comp e cd, S 7→∗ cd, [[e]] : S

Krivine Abstract Machine

We define the terms (in de Bruijn notation) as

t ::= n | λt | t t

namely deBruijn index, or abstraction, or application.
A value u is a pair tρ of a term and an environment, where an environment ρ is a list of

values.
Krivine Abstract Machine has for states t | ρ | S where tρ is a value and S is a stack of

values. The small step semantics is

0 | (tρ, ν) | S 7→ t | ρ | S n+ 1 | (u, ν) | S 7→ n | ν | S

λt | ρ | u : S 7→ t | (u, ρ) | S

t0 t1 | ρ | S 7→ t0 | ρ | (t1ρ) : S

So abstraction is “pop” while application is “push”.

1


