Some abstract machines

Arithmetic expression

What we present is a very simplified version of the fundamental paper of McCarthy and Painter on correctness of a compiler for arithmetic expressions (1967). The expressions are

$$
e::=\text { const } n \mid \text { add } e e
$$

and the semantics is

$$
\llbracket \text { const } n \rrbracket=n \quad \llbracket \operatorname{add} e_{0} e_{1} \rrbracket=\llbracket e_{0} \rrbracket+\llbracket e_{1} \rrbracket
$$

We define the instruction list (code) as

$$
c d::=\operatorname{LOAD} n c d|\operatorname{ADD} c d| \text { HALT }
$$

and the compilation function is

$$
\operatorname{comp}(\text { const } n) c d=\operatorname{LOAD} n c d \quad \operatorname{comp}\left(\operatorname{add} e_{0} e_{1}\right) c d=\operatorname{comp} e_{1}\left(\operatorname{comp} e_{0}(\operatorname{ADD} c d)\right)
$$

The machine has then for state a pair $c d, S$ where $c d$ is a code and S is a stack of numbers. The small step semantics for this machine is

$$
\overline{\text { ADD } c d, n_{1}: n_{0}: S \mapsto c d,\left(n_{1}+n_{0}\right): S} \quad \overline{\text { LOAD } n c d, S \mapsto c d, n: S}
$$

We can now state, and prove by induction on e
Theorem 0.1 For all expression e we have $\forall c d S \quad$ comp e $c d, S \mapsto^{*} c d$, $\llbracket e \rrbracket: S$

Krivine Abstract Machine

We define the terms (in de Bruijn notation) as

$$
t::=n|\lambda t| t t
$$

namely deBruijn index, or abstraction, or application.
A value u is a pair $t \rho$ of a term and an environment, where an environment ρ is a list of values.

Krivine Abstract Machine has for states $t|\rho| S$ where $t \rho$ is a value and S is a stack of values. The small step semantics is

$$
\begin{gathered}
\overline{0|(t \rho, \nu)| S \mapsto t|\rho| S} \quad \overline{n+1|(u, \nu)| S \mapsto n|\nu| S} \\
\overline{\lambda t|\rho| u: S \mapsto t|(u, \rho)| S} \\
\overline{t_{0} t_{1}|\rho| S \mapsto t_{0}|\rho|\left(t_{1} \rho\right): S}
\end{gathered}
$$

So abstraction is "pop" while application is "push".

