N

-

Data Structures

Exercise Session

O

o020
-

Qb Marco Vassena fb

Exercise 1 from 12/08

Analyze the time complexity

4)
for(int r = 0;: r < M: r++)

for(int ¢ = @; ¢ < N; c++)

. stack.push(c);

in terms of M, N and |stack]

Exercise 1 from 12/08

Analyze the time complexity

~

_

for(int r = 0;: r < M: r++)

for(int ¢ = @;: c < N3 Cc++)

stack.push(c); < on

~

in terms of M, N and |stack]

Exercise 1 from 12/08

Analyze the time complexity

~

_

for(int r = 0: r < M; F++)lhmf

for(int ¢ = 0; c < N;:

stack.push(c); <

O(1)

|

C++)

ly N times

in terms of M, N and |stack]

Exercise 1 from 12/08

Analyze the time complexity

4 Exactly M times

for(lnt I = Q; < M r++) }/Exactlythes

for(int ¢ = @; ¢ < N; c++)

stack.push(c); < on

_ J

in terms of M, N and |stack]

Exercise 1 from 12/08

Analyze the time complexity

4 Exactly M times

for(lnt I = Q; < M r++) }/Exactlythes

for(int ¢ = @; ¢ < N; c++)

stack.push(c); < on

_ J

in terms of M, N and |stack]

o(MN) |

Exercise 3 from 12/04

2 | 3 |.append |)

Exercise 3 from 12/04

2 | 3 |.append |)

11 2[3|4]|5

Exercise 3 from 12/04

2 | 3 |.append ()

11 2[3|4]|5

Implement append in O(1)

Linked List

Linked List

List
v

Linked List

— — ()

Linked List

head L List
(N
T

LNode

head

Linked List

List
é)

LNode
\ 4

next

head

Linked List

List
.y,

Node

DJLI B

next

Linked List

head [L' List
(N
T

Node null

DJLI G

next

D.append (D)

aii KRN

L

Linked List with pointer to last

()

- _/

Elpe Elgn Eln

Linked List with pointer to last

Linked List with pointer to last

-
L L tail

Elpe Elgn Eln

D.append (D)

el

L
T

Exercise 3.25a

[Define a data structure with]

Exercise 3.25a

[Define a data structure with]

oush(x)

Exercise 3.25a

[Define a data structure with]

oush(x) o(1)

Exercise 3.25a

[Define a data structure with]

oush(x) o(1)

Exercise 3.25a

[Define a data structure with]

oush(x) o(1)

pop()

Exercise 3.25a

[Define a data structure with]

oush(x) o(1)

pop() O(1)

Exercise 3.25a

[Define a data structure with]

oush(x) o(1)
pop() O(1)

Exercise 3.25a

[Define a data structure with]

oush(x) o(1)
pop() O(1)

findMin()

Exercise 3.25a

[Define a data structure with]

oush(x) o(1)
pop() O(1)

findMin() o(1)

Exercise 3.25a

[Define a data structure with]

oush(x) o(1)

pop() O(1)

findMin() o(1)

Exercise 3.29

~

-

Print a singly linked list in reverse in constant space:

~

J

Exercise 3.29

~

-

Print a singly linked list in reverse in constant space:

~

J

.printRev() // O(1) memory

Exercise 3.29

~

-

Print a singly linked list in reverse in constant space:

~

J

.printRev() // O(1) memory

Exercise 3.29

~

-

Print a singly linked list in reverse in constant space:

~

J

.printRev() void printRev() {

list.reverse();
3 for (int x : list)

2 print(x);
list.reverse();

)

Reverse in Place

Reverse in Place

= here = list.head
(Inlhallze) '
prev = nu

Reverse in Place

(Initialize

here

prev

list.head

null

First node processed

Reverse in Place

(Initialize

here

prev

list.head

null

First node processed

Previous node

Reverse in Place

(Initialize

Reverse Loop

[Shifting)

. [Reverse) y

here = list.head

prev = null

First node processed

Previous node

while (here # null) do
next = here.next
here.next = prev
prev = here

here = next

Reverse in Place

(Initialize

Reverse Loop

[Shifting)

. [Reverse) y

here = list.head

prev = null

First node processed

Previous node

while (here # null) do
next = here.next
here.next = prev
prev = here

here = next

Save next node

Reverse in Place

(Initialize

Reverse Loop

[Shifting)

. [Reverse) y

here = list.head

prev = null

First node processed

Previous node

while (here # null) do
next = here.next
here.next = prev
prev = here

here = next

Save next node

Reversing

Reverse in Place

(Initialize

Reverse Loop

[Shifting)

. [Reverse) y

here =

prev =

list.head

null

First node processed

Previous node

while (here # null) do

next = here.next

here.
prev

here

next = prev
= here

= nexi

Save next node

Reversing

Save previous node

Reverse in Place

(Initialize

Reverse Loop

[Shiftingj

. [Reverse) y

here = list.head

prev = null

First node processed

Previous node

while (here # null) do
next = here.next
here.next = prev
prev = here

here = next

Save next node

Reversing

Save previous node

Shift to next node

Reverse in Place

(Initialize

Reverse Loop

[Shifting)

. [Reverse) y

(Conclusion)

here = list.head

prev = null

First node processed

Previous node

while (here # null) do
next = here.next
here.next = prev
prev = here

here = next

Save next node

Reversing

Save previous node

Shift to next node

Reverse in Place

(Initialize

Reverse Loop

[Shifting)

. [Reverse) y

(Conclusion)

here =

prev =

list.head

null

First node processed

Previous node

while (here # null) do

next = here.next

here.
prev

here

next = prev
= here

= nexi

Save next node

Reversing

Save previous node

Shift to next node

list.head = prev

Reverse in Place

(Initialize

Reverse Loop

[Shifting |

. [Reverse) y

(Conclusion)

here =

prev =

list. head First node processed

nul| Previous node

while (here # null) do

next = here.next Save next node
here.next = prev Reversing
prev = here Save previous node
here = nex} Shift to next node

|is|',hec|d = prev last node becomes the head

Initiatlization and First lteration

here = list.head

prev = null

while (here # null) do
next = here.next

here.next = prev

(o)
00000

Initiatlization and First lteration

here = list.head

[Initializationj mev = null

while (here # null) do
next = here.next

here.next = prev

(o)
00000

Initiatlization and First lteration

here = list.head

(Initializationj mev = null

while (here # null) do
next = here.next

here.next = prev

()
? ?; 00—

prev here

Initiatlization and First lteration

here = list.head

(Initializationj mev = null

while (here # null) do

next = here.next

here.next = prev

()
? ?; 00—

prev here next

Initiatlization and First lteration

here = list.head

(Initializationj mev = null

[Reverse) while (here # null) do

next = here.next

here.next = prev

(o)
? OO0

prev here next

Reverse Loop

while (here # null) do
next = here.next
here.next = prev
prev = here

here = next

|

prev here

Reverse Loop

while (here # null) do

next = here.next

here.next = prev
prev = here

here = next

[Shifting)

|

prev| |here

Reverse Loop

while (here # null) do

next = here.next

here.next = prev

prev = here

here = next

[Shifting)
(Reversej

|

prev| |here

Reverse Loop

while (here # null) do

next = here.next

here.next = prev

prev = here

here = next

[Shifting)
(Reversej

prev| |here

Reverse Loop

while (here # null) do

next = here.next

here.next = prev

prev = here

here = next

[Shifting)
(Reversej

prev| |here

Reverse Loop

while (here # null) do

next = here.next

here.next = prev

prev = here

here = next

[Shifting)
(Reversej

next

prev

0L

,||<

here

Reverse Loop

while (here # null) do

next = here.next

here.next = prev

prev = here

here = next

prev

here

[Shifting)
(Reversej

next

[

Reverse Loop

while (here # null) do

next = here.next

here.next = prev

prev = here

here = next

prev

[Shifting)
(Reversej

next

[

Reverse Loop

while (here # null) do

next = here.next

here.next = prev

prev = here

here = next

[Shifting)
(Reversej

next

here

[

Reverse Loop

while (here # null) do

next = here.next [Shifting)
here.next = prev

prev = here (Reversej
here = next

next

.WDFE.

prev| |here

Reverse Loop

while (here # null) do

next = here.next

here.next = prev

prev = here

here = next

[Shiftingj
[Reversej

|

here

next

H=EER

Reverse Loop

while (here # null) do

next = here.next

here.next = prev

prev = here

here = next

[Shiftingj
[Reversej

T

prev

next

here

Last Iteration and Conclusion

while (here # null) do
next = here.next
here.next = prev
prev = here

here = next

list.head = prev

next

prev

|

here

Last Iteration and Conclusion

while (here # null) do

next = here.next

here.next = prev
prev = here

here = next

list.head = prev

(Shifﬁng)

prev

|

here

Last Iteration and Conclusion

while (here # null) do

next = here.next

here.next = prev

prev = here

here = next

list.head = prev

(Shifﬁng)

[Reve rse)

prev

|

here

Last Iteration and Conclusion

while (here # null) do

next = here.next

here.next = prev

prev = here

here = next

list.head = prev

(Shifting)
[Reverse)

prev here

Last Iteration and Conclusion

while (here # null) do

next = here.next

here.next = prev

prev = here

here = next

list.head = prev

(Shifﬁng)
[Reverse)

prev here

Last Iteration and Conclusion

while (here # null) do

next = here.next (Shifting)
here.next = prev
prev = here [Reverse)
here = next
next
list.head = prev l

D prev here

Last Iteration and Conclusion

while (here # null) do

next = here.next (Shifting)
here.next = prev

prev = here [Reverse)
here = next

(Conclusion) next

list.head = prev l

D prev here

Exercise 5 from13/04

Dynamic Array with operations:

* new() // Create empty array with length 1
e 1nS(X) // Insertin first empty position

e del () // Remove last element

Operations Result

Operations Result

new()

Operations Result

new()

ins(1)]

Operations Result

new()

ins(1)]

ins(2)

Operations

Result

new()

ins (1)

Double the size if full

Vv
ins(2)

Operations Result

new()
ins(1)]
:) Copy
Double the size if full
V v

ins(2)]

Operations

Result

new()

ins (1)

Double the size if full

Vv
ins(2)

Operations

Result

new()

ins (1)

Double the size if full

Vv
ins(2)

del()

Operations

Result

new()

ins (1)

Double the size if full

Vv
ins(2)

Resize if half-empty

dé&()

Operations Result
new ()
ins(1)]
5) Copy
Double the size if full
V A
ins(2) 1|2
Resize if half-empty Copy
V V
del() - >

Exercise 5 from13/04

For every N exists
a sequence of N operations Sn

such that
T(Sn) = Q(N2)

