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Exercise 1 from 12/08

Analyze the time complexity

in terms of  M , N and |stack| 

for(int r = 0; r < M; r++) 
 for(int c = 0; c < N; c++) 
 stack.push(c);
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Exercise 3 from 12/04

Implement append in O(1)

1 2 3 4 5.append ( )
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Exercise 3.29

1 2 3 .printRev()         // O(1) memory
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Print a singly linked list in reverse in constant space:

void printRev() { 
  list.reverse(); 
  for (int x : list) 
    print(x); 
  list.reverse(); 
}
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  here.next = prev 
  …
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Exercise 5 from13/04

Dynamic Array with operations:
  

• new()   // Create empty array with length 1 

• ins(x)    // Insert in first empty position  

• del()      // Remove last element 
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1

Copy



Exercise 5 from13/04

a sequence of N operations SN 

T(SN) = Ω(N2)

For every N exists

such that


