
Data Structures
Exercise Session

Marco Vassena



Exercise 1 from 12/08

Analyze the time complexity

in terms of  M , N and |stack| 

for(int r = 0; r < M; r++) 
 for(int c = 0; c < N; c++) 
 stack.push(c);



Exercise 1 from 12/08

Analyze the time complexity

in terms of  M , N and |stack| 

for(int r = 0; r < M; r++) 
 for(int c = 0; c < N; c++) 
 stack.push(c); O(1)



Exercise 1 from 12/08

Analyze the time complexity

in terms of  M , N and |stack| 

for(int r = 0; r < M; r++) 
 for(int c = 0; c < N; c++) 
 stack.push(c); O(1)

Exactly N times



Exercise 1 from 12/08

Analyze the time complexity

in terms of  M , N and |stack| 

for(int r = 0; r < M; r++) 
 for(int c = 0; c < N; c++) 
 stack.push(c); O(1)

Exactly M times

Exactly N times



Exercise 1 from 12/08

Analyze the time complexity

in terms of  M , N and |stack| 

for(int r = 0; r < M; r++) 
 for(int c = 0; c < N; c++) 
 stack.push(c);

ϴ(MN)

O(1)

Exactly M times

Exactly N times



Exercise 3 from 12/04

1 2 3 4 5.append ( )



Exercise 3 from 12/04

1 2 3 4 5.append ( )

=

1 2 3 4 5



Exercise 3 from 12/04

Implement append in O(1)

1 2 3 4 5.append ( )

=

1 2 3 4 5



Linked List



Linked List
List



Linked List
Listhead



1

Linked List

Node

Listhead



1

Linked List

Node

next

Listhead



1 2 3

Linked List

Node

next

Listhead



1 2 3

Linked List

Node null

next

Listhead



1 2 3

4 5

.append ( )



1 2 3

4 5

.append ( )



1 2 3

4 5

O(N) .append ( )



1 2 3

4 5

O(N) .append ( )



1 2 3

Linked List with pointer to last



1 2 3

Linked List with pointer to last



1 2 3

Linked List with pointer to last

tail



1 2 3

4 5

.append ( )



1 2 3

4 5

.append ( )



1 2 3

4 5

.append ( )



1 2 3

4 5

.append ( )O(1 )



Exercise 3.25a

Define a data structure with



Exercise 3.25a

push(x)

Define a data structure with



Exercise 3.25a

push(x) O(1)

Define a data structure with



Exercise 3.25a

push(x) O(1)

Define a data structure with



Exercise 3.25a

push(x)

pop()

O(1)

Define a data structure with



Exercise 3.25a

push(x)

pop()

O(1)

O(1)

Define a data structure with



Exercise 3.25a

push(x)

pop()

O(1)

O(1)

Define a data structure with



Exercise 3.25a

push(x)

pop()

findMin()

O(1)

O(1)

Define a data structure with



Exercise 3.25a

push(x)

pop()

findMin()

O(1)

O(1)

O(1)

Define a data structure with



Exercise 3.25a

push(x)

pop()

findMin()

O(1)

O(1)

O(1)

Define a data structure with



Exercise 3.29

Print a singly linked list in reverse in constant space:



Exercise 3.29

1 2 3 .printRev()         // O(1) memory

Print a singly linked list in reverse in constant space:



Exercise 3.29

1 2 3 .printRev()         // O(1) memory

3 

2 

1

Print a singly linked list in reverse in constant space:



Exercise 3.29

1 2 3 .printRev()         // O(1) memory

3 

2 

1

Print a singly linked list in reverse in constant space:

void printRev() { 
  list.reverse(); 
  for (int x : list) 
    print(x); 
  list.reverse(); 
}



Reverse in Place



Initialize
here = list.head 
prev = null

Reverse in Place



Initialize
here = list.head 
prev = null

Reverse in Place

First node processed



Initialize
here = list.head 
prev = null

Reverse in Place

First node processed

Previous node



Initialize

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

here = list.head 
prev = null

Reverse in Place

First node processed

Previous node

Shifting

Reverse

Reverse Loop



Initialize

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

here = list.head 
prev = null

Reverse in Place

First node processed

Previous node

Save next node

Shifting

Reverse

Reverse Loop



Initialize

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

here = list.head 
prev = null

Reverse in Place

First node processed

Reversing

Previous node

Save next node

Shifting

Reverse

Reverse Loop



Initialize

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

here = list.head 
prev = null

Reverse in Place

First node processed

Reversing

Previous node

Save next node

Save previous node

Shifting

Reverse

Reverse Loop



Initialize

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

here = list.head 
prev = null

Reverse in Place

First node processed

Reversing

Previous node

Save next node

Save previous node

Shift to next node

Shifting

Reverse

Reverse Loop



Initialize

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Conclusion

here = list.head 
prev = null

Reverse in Place

First node processed

Reversing

Previous node

Save next node

Save previous node

Shift to next node

Shifting

Reverse

Reverse Loop



Initialize

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Conclusion list.head = prev

here = list.head 
prev = null

Reverse in Place

First node processed

Reversing

Previous node

Save next node

Save previous node

Shift to next node

Shifting

Reverse

Reverse Loop



Initialize

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Conclusion list.head = prev

here = list.head 
prev = null

Reverse in Place

First node processed

Reversing

Previous node

Save next node

Save previous node

Shift to next node

last node becomes the head

Shifting

Reverse

Reverse Loop



Initiatlization and First Iteration

list

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  …

here = list.head 
prev = null



Initiatlization and First Iteration

list

Initialization

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  …

here = list.head 
prev = null



Initiatlization and First Iteration

list

Initialization

prev here

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  …

here = list.head 
prev = null



Initiatlization and First Iteration

list

Initialization

prev here next

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  …

here = list.head 
prev = null



Initiatlization and First Iteration

Reverse

list

Initialization

prev here next

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  …

here = list.head 
prev = null



hereprev

. . . . . .

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Reverse Loop



hereprev

next

. . . . . .

Shifting
while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Reverse Loop



hereprev

next

. . . . . .

Shifting

Reverse

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Reverse Loop



hereprev

next

. . . . . .

Shifting

Reverse

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Reverse Loop



hereprev

next

. . . . . .

Shifting

Reverse

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Reverse Loop



hereprev

next

. . . . . .

Shifting

Reverse

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Reverse Loop



hereprev

next

. . . . . .

Shifting

Reverse

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Reverse Loop



hereprev

next

. . . . . .

Shifting

Reverse

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Reverse Loop



hereprev

next

. . . . . .

Shifting

Reverse

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Reverse Loop



hereprev

next

. . . . . .

Shifting

Reverse

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Reverse Loop



hereprev

next

. . . . . .

Shifting

Reverse

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Reverse Loop



hereprev

next

. . . . . .

Shifting

Reverse

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next

Reverse Loop



hereprev

Last Iteration and Conclusion

list.head = prev
next

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next



hereprev

Shifting

Last Iteration and Conclusion

list.head = prev
next

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next



hereprev

Shifting

Reverse

Last Iteration and Conclusion

list.head = prev
next

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next



hereprev

Shifting

Reverse

Last Iteration and Conclusion

list.head = prev
next

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next



hereprev

Shifting

Reverse

Last Iteration and Conclusion

list.head = prev
next

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next



hereprev

Shifting

Reverse

Last Iteration and Conclusion

list.head = prev
next

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next



hereprev

Shifting

Reverse

Last Iteration and Conclusion

list.head = prev
Conclusion next

while (here ≠ null) do 
  next = here.next 
  here.next = prev 
  prev = here 
  here = next



Exercise 5 from13/04

Dynamic Array with operations:
  

• new()   // Create empty array with length 1 

• ins(x)    // Insert in first empty position  

• del()      // Remove last element 



Operations Result



Operations Result

new()



Operations Result

new()

ins(1) 1



Operations Result

new()

ins(1) 1

ins(2)



Operations Result

new()

ins(1) 1

ins(2)

Double the size if full



Operations Result

new()

ins(1) 1

ins(2) 1

Double the size if full
Copy



Operations Result

new()

ins(1) 1

ins(2) 1 2

Double the size if full
Copy



Operations Result

new()

ins(1) 1

ins(2) 1 2

Double the size if full
Copy

del() 1



Operations Result

new()

ins(1) 1

ins(2) 1 2

Double the size if full
Copy

del() 1

Resize if half-empty



Operations Result

new()

ins(1) 1

ins(2) 1 2

Double the size if full
Copy

del() 1

Resize if half-empty

1

Copy



Exercise 5 from13/04

a sequence of N operations SN 

T(SN) = Ω(N2)

For every N exists

such that


