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.printRev() void printRev() {

list.reverse();
3 for (int x : list)

2 print(x);
list.reverse();

)
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Exercise 5 from13/04

Dynamic Array with operations:

* new( ) // Create empty array with length 1
e 1nS(X) // Insertin first empty position

e del () // Remove last element
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Exercise 5 from13/04

For every N exists
a sequence of N operations Sn

such that
T(Sn) = Q(N2)




