Data Structures

Exercise Session

Marco Vassena

Exercise 1.11a

Exercise 2.1

Order the following functions by growth rate:

Which functions grow at the same rate?

2.2) True or False

$$
\mathrm{T}_{1}(\mathrm{~N})=\mathrm{O}(\mathrm{f}(\mathrm{~N}))
$$

$$
\mathrm{T}_{2}(\mathrm{~N})=\mathrm{O}(\mathrm{f}(\mathrm{~N}))
$$

A. $\quad \mathrm{T}_{1}(\mathrm{~N})+\mathrm{T}_{2}(\mathrm{~N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$
B. $\quad T_{1}(N)-T_{2}(N)=o(f(N))$
C. $\quad T_{1}(N) / T_{2}(N)=O(1)$
D. $\quad \mathrm{T}_{1}(\mathrm{~N})=\mathrm{O}\left(\mathrm{T}_{2}(\mathrm{~N})\right)$

Exercise 2.10

Exercise 2.10

Find the running time for adding two N -digit integers:

$$
\begin{array}{rrrr}
x_{N} & \cdots & x_{1} & + \\
y_{N} & \cdots & y_{1} & \\
{ } \begin{array}{lll}
z_{N} & \cdots & z_{1}
\end{array} } & =
\end{array}
$$

Exercise 2.10

Find the running time for multiplying two N -digit integers:

$$
\begin{array}{llll}
X_{N} & \cdots & X_{1} & x \\
Y_{N} & \ldots & y_{1} & =
\end{array}
$$

$$
\mathbf{Z}_{2 N} \quad \cdots \quad \mathbf{Z N}_{\mathbf{N}} \quad \cdots \quad \mathbf{Z}_{1}
$$

Exercise 2.15

Given an integer array A

Such that

$$
\mathrm{A}_{0}<\mathrm{A}_{1}<\ldots<\mathrm{A}_{\mathrm{N}-2}<\mathrm{A}_{\mathrm{N}-1}
$$

Is there index i, such that $\quad A_{i}=i$

