Networks and Distributed Systems

Olaf Landsiedel

Networks and Distributed Systems

- What is...
- A computer network?
- Have you ever seen one?
- Have you ever used one?
- A distributed system?
- Have you ever seen one?
- Have you ever used one?

Networks and Distributed Systems

- A Computer Network is is characterized by
- Bring data from A and B
- By exchanging messages
- A Distributed System is characterized by
- Multiple devices
- Connected by a network
- Cooperating on some task

Examples

One more Example

 CPU
 MULTIPLE CORES

GPU
THOUSANDS OF CORES

- A modern computer is a distributed system
- Multi-core CPU
- Multi-core GPU
- ...
- Actually
- Even a modern cell phone

Distributed Systems vs. Networks

- Networking is worried about
- Sending a message from here to there
- Not what you do with the message
- Distributed Systems
- Assume:

There is a way to send messages

- Focus: How you build a system using those messages
- Teach you what things to do with a network

Networks and Distributed Systems

HISTORY

History

- In the examples
- Many different distributed systems and networks
- How did we get here
- Where do all these networks and distributed systems come from?
- What is the trend?
- Will their number increase even more?

1943

Thomas J. Watson, 1943;
Chairman and CEO of International Business Machines (IBM)

If this statement had been correct, we would not teach:

- Computer Networks, Distributed systems, ...
- Or, more precisely no Computer Science

1969

ARPANET begins... with a deployment at UCLA, Stanford, UCSB, and Utah (one computer per site)

1969, 29 Oct, 22:30:
First data on the Internet

1969, 29 Oct, 22:30:
First data on the Internet

Lessons Learned:

1. First words/letters on the Internet: "lo"
2. Not many things in the Internet work on the first try

Internet 2007 (just the backbone)

1971

$\left\{\begin{array}{l}\text { - Pre-me (<1979) } \\ \text { - Pre-you (<1989) } \\ -1989 \\ -1990 \\ -1991 \\ -1992 \\ -1993 \\ 1994 \\ \\ \hline\end{array}\right.$

1974

1984

$\left\{\begin{array}{l}\text { Pre-me (<1979) } \\ \text { - Pre-you (<1989) } \\ -1989 \\ -1990 \\ -1991 \\ -1992 \\ -1993 \\ -1994 \\ \\ \end{array}\right.$

1989 - The Web Emerges

Information Management: A Proposal
March 1989, May 1990
March 1989, May 1990
This proposal concems the management of genera information about accelerators and experments at CERN. II discusses the problems of loss of information about complex evolving systems and derives a
solution based
Pre-you (<1989)
1989
1990
1991
1992
1993
1994

Overview

Manyy of the discussions of the fiurre at CERN and the LHC e era end with the question - ${ }^{-1}$ Yes, but how will we ever keep track of such a large project? 7 This proposal provides an answer to such questions Firsty, it discusses the problem of information access at CERN. Then, it introduces the idea of inked information systems, and compares them with less fezible ways of finding information It then summansises my short experience with non-Iinear text systems known as "hypertext?, describes what CERN needs from such a system, and what industy may provide. Finally, it suggests steps we should take to involve ourselves with hypertext now, so that ndividually and collectively we may understand what we are creating \times Find: broder \quad Next \uparrow Previos, Hothight all \square mactcticse

Tim Berners-Lee writes "Information Management: A proposal" at CERN

1990

Pre-me (<1979)
Pre-you (<1989)
1989
1990
1991
1992
1993
1994

1991

First paper appears on the project at Hypertext conference
\rightarrow Only accepted as a poster!

- Pre-me (<1979)

Pre-you (<1989)
1989
1990
1991
1992
1993
1994

1993

Mosaic became the first graphical browser

CERN agrees to allow public use of web protocol royalty-free!

Pre-me (<1979)
Pre-you (<1989)
1989
1990
1991
1992
1993

1994

\rightarrow Mosaic goes commercial (later becomes Netscape)
\rightarrow Traditional dialups (AOL, CompuServe, Prodigy) begin to sell Internet access.

- Atts and Humanities - Architecture, Photography, Literature.
- Business and Economy XXtall - Companies, Investments, Classifieds.
- Computers and Internet [Xtall - Internet, www, Sofware, Multimedia.
- Education - Universities, $\mathrm{K}-12$, College Entrance
- Entertaiument Xtrall - Cool Links, Movies, Music, Kumor.
- Goverument - 96 Elections, Politics Xtrall, Agencies, Law, Miditary.
- Health Xtrall - Medicine, Druss, Diseases, Finess...
- News and Media [Xtral] - Current Events, Maaraines, TV. Newspapers.
- Recreation and Sports [Xta] - Sports, Games, Travel, Autos, Outdoors.
- Reference - Libraries, Dictionaries, Phone Numbers.
- Regional - Countries, Regions, U.S. States.
- Science - CS, Biology, Astronoms, Engineering.
- Social Science - Anthropology, Sociology, Economics.
- Society and Culture - People, Envirorment, Religion.

Yahooligansl - Yahool Shop - Yahool Intemet Life
Dady Picks - Random Yahool Link - Weekly Picks
"Jerry' s Guide to the world wide web" started ... it eventually became Yahoo

1995+

Amazon arrives and the commercialization of the web begins

Today

- How many connected devices do you have?
- Many!
- Desktop
- Laptop
- (Smart)phone
- Tablet
- TV / gaming console
- ...

Summary: A bit of History

Mainframe age (60 's \& 70 's):
One computer for many

PC age (80 's \& 90's):
One computer for each, partially networked

Cloud computing
Mobile, ubiquitous computir
(Today, > 2000):
Many computers for each, networked

Tomorrow?

Today

Tomorrow?

Tomorrow? Networked Society!

- Networks and Distributed Systems touch all aspects of daily life!
- Integral building block for our networked society
- Strongly increasing in numbers
- Result: Very good topic to study ;-)

Computer Systems and Networks
MASTER PROGRAM

Computer Systems and Networks

120 credits (MSc, 2 years)

Programme aim

As a student of this master's programme, you will develop a solid grasp of computer systems and networks through a broad, yet in-depth, training experience in the field of Computer Science and Engineering.

You will acquire theoretical knowledge and engineering skills in:

- Parallel and Distributed Systems
- Computer Security and Dependability
- Computer Systems Engineering
- Communication Networks

Computer Systems and Networks

Compulsory coursesElective courses
*Mandatory only if not taken before
** Recommended elective project courses: Autonomous and Cooperative Vehicluar Systems (second study period), OCT Support for adaptiveness and Security in the smart grid (fourth study period)
*** Choose two out of these course tracks: Computer security, Real-time systems, Distributed systems and Computer architecture

Networks and Distributed Systems
COURSES

Courses

- Networks:
- EDA387-Computer networks, LP1, 7.5 hec
- EDA343, EDA344, LEU061 Datakommunikation, LP1, LP3, LP4. 7.5 hec (Bachelor)
- Operating Systems:
- EDA092/DIT400 Operating Systems, LP1, 7.5 hec
- Distributed Systems:
- Distributed Systems, LP2, 7.5hec, TDA596 (Chalmers), DIT240 (GU)
- Distributed Systems advanced, LP3 - 7.5 hec, TDA297 (CTH), DIT290 (GU)
- Project Courses
- DAT295 - Autonomous and Cooperative Vehicular Systems, Lp2, 7.5hec
- DAT300-ICT support for adaptiveness and security in the smart grid, LP4, 7.5hec

[Data Communication and later Computer networks]

Course aims

- Learn well the basic data-networking principles and methods, to follow constant change in the field
- Learn to deal with bigger problems by breaking into small ones

After completion of the course, you are able to

- distinguish network services, related protocols, new systems relating with IoT, varying data flows and virtualization (Software Defined Networks)
- Understand and think possibilities and constraints in the existing systems
- build and configure a working network

Course Operating Systems

- Course covering how operating systems bridge hardware / software and users.
- Broad spectrum, from:

Threads management in multicore CPUs

Courses Distributed Systems

- Learn to build large-scale distributed systems - And the associated challenges

Internet

Facebook, etc.

Modern Cars

Will I learn something useful?

- We hope so!
- This our key goal
- From an email we got from a former student
- " [...] I'm [...] making a living out of building distributed systems, [...] rest assured I've been finding the contents of your course very useful. :)"
- Started working at Spotify
- We hope you will have a similar experience

Computer Systems and Networks

Compulsory coursesElective courses
*Mandatory only if not taken before
** Recommended elective project courses: Autonomous and Cooperative Vehicluar Systems (second study period), OCT Support for adaptiveness and Security in the smart grid (fourth study period)
*** Choose two out of these course tracks: Computer security, Real-time systems, Distributed systems and Computer architecture

Questions

