
Software Technology

Magnus Myreen

(Using material from previous years, including material by David Sands)

2010

Over 6000 complaints of unintended
acceleration

US Congress instigates NASA investigation

2013 Civil

Bugs per line of code?

Concurrent Programming

Natural programming model in
• embedded systems
• operating systems
• GUIs

But it is easy to get wrong!

Sequential program

Concurrent Program

Demo

Data Race

Learn More!

Concurrent Programming
TDA384/DIT391 LP1, LP3

Testing, Debugging, and Verification
TDA567/DIT082, LP2

Bugs might make
things go wrong

Bugs might make
things go wrong

will

No bugs = Secure?

No bugs = Secure?

Does the software treat our sensitive data in an
appropriate way?

What Information Flow Controls do
we want?

• Confidentiality, Privacy
– Information about sensitive data cannot be

deduced by observing public channels
• Integrity

– Untrusted data should not influence the
values sent on trusted channels

• Erasure
– information is no longer available after use

if (input != “attack at dawn”)
{ output(“BANG!”); }

Our Chief Weapon

https://www.youtube.com/watch?v=Nf_Y4MbUCLY&t=15

https://www.youtube.com/watch?v=Nf_Y4MbUCLY&t=15

Our Chief Weapon

Static Analysis

Our Chief Weapon

Static Analysis
Main =

do { x <- readFile
“Contact”;

system(“/usr/
ucb/mail “ ++ x)
; etc etc etc.

+
policy

code

Our Chief Weapons

Transformation

Our Chief Weapons

Transformation
Main =

do { x <- readFile
“Contact”;

system(“/usr/
ucb/mail “ ++ x)
; etc etc etc.

+
policy

code

Code
+ policy

Our Chief Weapons

Libraries

Main =
do { x <- readFile

“Contact”;
system(“/usr/

ucb/mail “ ++ x)
; etc etc etc.

+ policy
code

code

Our Chief Weapons

New Programming
Languages

Transformation
Static Analysis

Monitoring

Main =
do { x <- readFile

“Contact”;
system(“/usr/

ucb/mail “ ++ x)
; etc etc etc.

code
policy

What do we need to achieve this?

Deep understanding of programming language
design and implementation

Where to start?

Programming Language Technology
LP2 DAT151/DIT230

More to come (MSc)

• Compiler Construction TDA283/DIT300, LP4

• Language-based Security TDA602/DIT103, LP3

Courses

Concurrent programming

Testing, Debugging,
& Verification

Batchelor’s level

Language-Based Security

Programming Language
Technology

Compiler Construction

Formal Methods for
Software Development

Master’s level

… an error in java.util

… an error in java.util

http://www.envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-
broken-and-how-to-fix-it/

http://www.envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

The KeY project
• KeY lets you specify the

desired behaviour of your
program in the well-known
specification language JML,
and helps you prove that your
programs conforms to its
specification. That way, you
did not only show that your
program behaves as expected
for some set of test values -
you proved that it works
correctly for all possible
values!

• Wolfgang Ahrendt (Chalmers)
and others

A brief demo of KeY

https://www.key-project.org/

Project lead: Magnus
Myreen

(now at Chalmers)

… in a connected world:

… in a connected world:

PRIVACY POLICIES

My supervisor cannot see the pictures I’m
tagged in during the weekendMy supervisor cannot see my posts from

20:00 to 8:00

50

Where to start?

TDA294 / DIT271
Formal Methods for Software Development

(DAT060 / DIT201 Logic in computer science)
(DAT140 / DIT232 Types for Programs and Proofs)

All problems are not solved:

2018: https://meltdownattack.com/

Information leakage due to speculation in hardware implementation.

	Software Technology
	Slide Number 2
	Slide Number 3
	Slide Number 4
	2010
	Slide Number 6
	2013 Civil
	Bugs per line of code?
	Concurrent Programming
	Sequential program
	Concurrent Program
	Demo	
	Data Race
	Learn More!
	Bugs might make things go wrong�
	Bugs might make things go wrong�
	Slide Number 17
	No bugs = Secure?
	No bugs = Secure?
	What Information Flow Controls do we want?
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Our Chief Weapon
	Our Chief Weapon
	Our Chief Weapon
	Our Chief Weapons
	Our Chief Weapons
	Our Chief Weapons
	Our Chief Weapons
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	What do we need to achieve this?
	Where to start?
	More to come (MSc)
	Courses
	… an error in java.util
	… an error in java.util
	The KeY project
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
			 PRIVACY POLICIES
	Where to start?
	All problems are not solved:

