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Challenges in Computer Architecture
● The Power wall.
● The Instruction level parallelism (ILP) wall.
● The Memory wall.

All of these lead to more complicated (from the programmer’s point of view) computer architectures. 



The Power Wall
● More capable processors use more power.

○ It may not be possible to make use of all the resources in a chip at once. Parts of it needs to 
be turned off to not become too hot (draw too much power).

○ (solution) Chips consisting of different kinds of special purpose (or general purpose). compute 
capabilities, not all used at once (for example the big.LITTLE). 



The ILP Wall  
● It is now hard to push computer performance further by speeding up single 

threaded execution by automatic ILP or by increasing the frequency. 
● (solution) More, but simpler, cores. Accelerators. 



The Memory Wall
● Processor performance and memory performance show diverging trends.
● (solution) Larger caches, more complicated memory hierarchies, programmer 

managed scratch-pad memories. 



Heterogeneous Systems



Node

An HPC node today: 
● Processors (traditional CPUs) 
● GPUs
● And/Or Xeon PHI

Upcoming: 
● Field Programmable Gate Arrays

○ Xilinx Zynq Ultrascale+ 
○ Xeon + FPGA 
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Efficient code
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Simple Programming 
Model

Efficient code

Functional Programming

Domain Specific Languages

Intermediate representations

Efficient code generators



GPUs



“X on the GPU”



“X on the GPU”
● 10x - 100x speedup. 
● Very complicated. 



NVIDIA Kepler (GK110)

Sandy Bridge



GPU: The Architecture
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GPU: Zoom in on an MP 



CUDA: Concepts
● Threads

○ Executes in the PEs.

● Warps
○ 32 threads, one PC.

● Blocks
○ Group of threads that cooperates. 
○ Can synchronize.
○ Shared Memory.

● The Grid 
○ The collection of blocks.



CUDA: More details
● Threads

○ All threads are described by a single program (SIMT). 

● Blocks
○ Up to 1024 cooperating threads per block. 
○ Many blocks share an MP.
○ More Threads per block than processors per MP. (syncthreads) 
○ 1,2 or 3d shaped iteration space.

● The Grid 
○ Work is launched onto the GPU in a unit called a grid. 
○ 1,2 or 3d grid of blocks. 



Grid of Blocks of Threads

dim3 grid_dim(4,4,4); 



Grid of Blocks of Threads

dim3 grid_dim(4,4,4); dim3 block_dim(4,4,4); 



Launching a Grid
kernel<<<grid_dim,block_dim>>>(arg1,...,argn); 



The Kernel Code
● One code executed by ALL threads of the grid. 

○ Identifies its position in the grid/block using: 
■ blockIdx.x, blockIdx.y, blockIdx.z. 
■ threadIdx.x, threadIdx.y, threadIdx.z. 

○ Can query the dimensions of the grid/block using: 
■ gridDim.x, gridDim.y, gridDim.z.
■ blockDim.x, blockDim.y, blockDim.z.

○



CUDA: An Example Kernel  
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CUDA: An Example Kernel  
__global__ void dot( int* a, int* b, int* c ) {
 __shared__ int tmp[THREADS_PER_BLOCK];

 int gid = threadIdx.x +
           blockIdx.x *
           blockDim.x;

 tmp[threadIdx.x] = a[gid] * b[gid];

 __syncthreads();

 /* REDUCE */
 if (threadIdx.x == 0) {

int sum = 0;
for (int i = 0; i < THREADS_PER_BLOCK; ++i)
  sum += tmp[i];
atomicAdd(c, sum);

 }
}

a0 a1 a2 an

b0 b1 b2 bn

r



CUDA: A Launch Example
dot<<<1000,1000>>>(a,b,result); 



Functional GPU Programming



Haskell Based Embedded Languages
Accelerate Obsidian



Accelerate



Accelerate: An Example

dotp :: Num n => Vector n -> Vector n -> Acc (Scalar n)

dotp xs ys = let xs' = use xs

                 ys' = use ys

             in  fold (+) 0 (zipWith (*) xs' ys')



Accelerate: An Example

dotp :: Num n => Vector n -> Vector n -> Acc (Scalar n)

dotp xs ys = let xs' = use xs

                 ys' = use ys

             in  fold (+) 0 (zipWith (*) xs' ys')

zipWith

fold



Accelerate: An Example

zipWith

fold



Accelerate: High Level Optimisations

Fusion 



Accelerate: High Level Optimisations

Fission 

Split

Concat



Accelerate: Operations
Generate

Permute

Map 

ZipWith

Fold

Scan

...



Accelerate: Array shapes
Shapes: 

data Z = Z

data tail :. head = tail :. head 

One dimensional shape: 

Z :. Int 

Two dimensional shape: 

Z :. Int :. Int 

myShape :: Z :. Int 

myShape = Z :. 10 



Accelerate Operations With Types
use :: Array sh e -> Acc (Array sh e) 

map :: (Exp a -> Exp b) -> Acc (Array sh a) -> Acc (Array sh b) 

zipWith :: (Exp a -> Exp b -> Exp c) -> Acc (Array sh a) -> Acc (Array sh b) -> Acc (Array sh c) 

fold :: (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Array sh :. Int a) -> Acc (Array sh a) 



Obsidian



Obsidian
● High/Low-level programming.
● Mimics the GPU hierarchy. 
● Generate GPU kernels.
● Easily generate code variants.
● Expose parameters for auto-tuning.

○ Always a parameter: Number of “real” threads, Number of “real” blocks.



Obsidian: A small example
increment :: Num a => SPull a -> SPull a
increment arr = fmap (+1) arr



Obsidian: A small example
increment :: Num a => SPull a -> SPull a
increment arr = fmap (+1) arr

incrementKernel :: Num a => DPull a -> DPush Grid a
incrementKernel arr = asGrid $ fmap (push . increment) arr'
  where
    -- make a selection of how many elements to process per CUDA block
    arr' = splitUp 2048 arr



Obsidian: A small example
increment :: Num a => SPull a -> SPull a
increment arr = fmap (+1) arr

incrementKernel :: Num a => DPull a -> DPush Grid a
incrementKernel arr = asGrid $ fmap (push . increment) arr'
  where
    -- make a selection of how many elements to process per CUDA block
    arr' = splitUp 2048 arr

incrementKernel’ :: Num a => Word32 -> DPull a -> DPush Grid a
incrementKernel’ n arr = asGrid $ fmap (push . increment) arr'
  where
    arr' = splitUp n arr



Obsidian: Running the small example on the GPU
performInc :: IO () 
performInc =
  withCUDA $
  do
    kern <- capture 512 incrementKernel
    
    useVector (V.fromList [0..4096 :: Word32]) $ \i ->
      withVector 4096  $ \o ->
      do
        fill o 0

        o <== (2,kern) <> i

        r <- copyOut o
        lift $ putStrLn $ show r



Obsidian: Pull and Push arrays 
● “Delayed” arrays.

○ A description of how to compute values. 
○ A “compute” functions makes the arrays “real” in memory.

● Operations on pull/push arrays automatically fuse. 
○ Unless “compute” is used between operations.  



Pull Arrays
data Pull s a = Pull {pullLen :: s, 

                        pullFun :: EWord32 -> a}



Pull Arrays
data Pull s a = Pull {pullLen :: s, 

                        pullFun :: EWord32 -> a}

map f (Pull n ixf) = Pull n (f . ixf)



Pull Arrays
data Pull s a = Pull {pullLen :: s, 

                        pullFun :: EWord32 -> a}

Fusion: 

arr = Pull n ixf

map f (map g arr) = map f (Pull n (g . ixf) 

                             = Pull n (f . g . ixf) 



Push Arrays
data Push t s a = Push s (PushFun t a)

type PushFun t a = Writer a -> Program t ()

type Writer    a = a -> EWord32 -> Program Thread ()



Push Arrays
data Push t s a = Push s (PushFun t a)

type PushFun t a = Writer a -> Program t ()

type Writer    a = a -> EWord32 -> Program Thread ()

 map  f (Push s p) = Push s $ \wf -> p (\e ix -> wf (f e) ix)



SPull, SPush, DPull, DPush 
The size of an array can be either Word32 or Exp Word32 

● Statically known size a requirement in kernels that use shared memory.
● Dynamic size allowed at the top level of the hierarchy (in multiples of the 

block size). 



Why two kinds of arrays ? 
Pull Arrays: 

● Efficient indexing.
● No efficient concatenation
● Consumer decides iteration pattern 

Push Arrays:

● Efficient concatenation. 
● No efficient indexing.
● Producer decides iteration pattern.



Obsidian: Programming the Hierarchy
Push Arrays have hierarchy level type parameter: Push t s a 

● Thread, Warp, Block, Grid 
● Influences how iteration pattern is realised in the generated CUDA code.

○ Sequential / parallel



Obsidian: Programming the Hierarchy
The type parameter seen earlier on 
Push arrays and on Programs. 

data Thread
data Step t

type Warp  = Step Thread
type Block = Step Warp
type Grid  = Step Block



Obsidian: Programming the Hierarchy
The type parameter seen earlier on 
Push arrays and on Programs. 

data Thread
data Step t

type Warp  = Step Thread
type Block = Step Warp
type Grid  = Step Block

type family LessThanOrEqual a b where
   LessThanOrEqual Thread   Thread   = True
   LessThanOrEqual Thread   (Step m) = True
   LessThanOrEqual (Step n) (Step m) = LessThanOrEqual n m
   LessThanOrEqual x y                 = False
   

type a *<=* b = (LessThanOrEqual a b ~ True)



Obsidian: Programming the Hierarchy
class (t *<=* Block) => AsBlock t where
  asBlock :: SPull (SPush t a) ->
            SPush Block a
  asBlockMap :: (a -> SPush t b)
             -> SPull a
             -> SPush Block b

instance AsBlock Thread where
  asBlock      = tConcat
  asBlockMap f = tConcat . fmap f
 
instance AsBlock Warp where
  asBlock      = pConcat
  asBlockMap f = pConcat . fmap f
 
instance AsBlock Block where
  asBlock      = sConcat
  asBlockMap f = sConcat . fmap f



Obsidian: Programming the Hierarchy
class (t *<=* Block) => AsBlock t where
  asBlock :: SPull (SPush t a) ->
            SPush Block a
  asBlockMap :: (a -> SPush t b)
             -> SPull a
             -> SPush Block b

instance AsBlock Thread where
  asBlock      = tConcat
  asBlockMap f = tConcat . fmap f
 
instance AsBlock Warp where
  asBlock      = pConcat
  asBlockMap f = pConcat . fmap f
 
instance AsBlock Block where
  asBlock      = sConcat
  asBlockMap f = sConcat . fmap f

class (t *<=* Warp) => AsWarp t



Obsidian: Programming the Hierarchy
class (t *<=* Block) => AsBlock t where
  asBlock :: SPull (SPush t a) ->
            SPush Block a
  asBlockMap :: (a -> SPush t b)
             -> SPull a
             -> SPush Block b

instance AsBlock Thread where
  asBlock      = tConcat
  asBlockMap f = tConcat . fmap f
 
instance AsBlock Warp where
  asBlock      = pConcat
  asBlockMap f = pConcat . fmap f
 
instance AsBlock Block where
  asBlock      = sConcat
  asBlockMap f = sConcat . fmap f

class (t *<=* Warp) => AsWarp t

asThread :: ASize l
         => Pull l (SPush Thread b)
         -> Push Thread l b

asGrid :: ASize l 
       => Pull l (SPush Block a)
       -> Push Grid l a



Obsidian and Auto-Tuning



Compilation

Source code Compiler Machine 
code



Compilation: Tuning framework

Source code Compiler Machine 
codeSource code Compiler Machine 
code

EvaluationInput



Tuning Framework
class TuneM m where
  -- | Get parameter by index.
  getParam :: ParamIdx -> m Int

type ParamIdx = Int

scoreIt :: (MonadIO m, TuneM m)
        => m (Maybe Result)
scoreIt = do
  threads <- getParam 0
  blocks  <- getParam 1
  liftIO $ catch (
    do time <- timeIt threads blocks
       return $ Just
              $ Result ([threads,blocks],time)
    )
    (\e -> do putStrLn (show (e :: SomeException))
              return Nothing
    )



Obsidian: Tuning

● Auto-tuning
● Specialised code 

variants



Obsidian: Tuning

● Exhaustive
● Random
● Simulated annealing
● Hill climbing

Mandelbrot



Obsidian: Tuning

● Exhaustive
● Random
● Simulated annealing
● Hill climbing

Histogram



Obsidian And Accelerate Conclusions

Accelerate

● High level programs. 
○ High level optimisations. 

● Entire applications.
● Multi-device RTS.

Obsidian

● Control
○ of what the GPU actually does. 
○ of Shared Memory .

● Kernels.



High Performance Computing and FPGAs

● 1 or more CPUs.
● 0,1 or more GPUs.
● Xeon Phi.
● FPGA.



FPGA: What ? 
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FPGA: What ? 



Motivation 

FPGA GPU CPU

Execution time 0.00787s 0.0858s 4.291s

Speed-up 545x 50x 1x

Dynamic power 20W 95W 40W

Total power 150W 225W 170W

Energy 1.1805J 19.305J 729.47J

Development time 60 days 3 days 1 day

Xian Tian, Khaled Benkrid: Monte-Carlo Simulation-Based Financial Computing on the Maxwell FPGA Parallel Machine
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FPGA GPU CPU

Execution time 0.00787s 0.0858s 4.291s

Speed-up 545x 50x 1x

Dynamic power 20W 95W 40W

Total power 150W 225W 170W

Energy 1.1805J 19.305J 729.47J

Development time 60 days 3 days 1 day

Xian Tian, Khaled Benkrid: Monte-Carlo Simulation-Based Financial Computing on the Maxwell FPGA Parallel Machine



Motivation

FPGA GPU CPU

Speed-up 29x 33x 1x

Power 18W 160W 125W

Efficiency (Msamples/J) 12.8 7.5 0.6

Victor Medeiros et.al: High Performance Implementation of RTM Seismic Modeling on FPGAs: Architecture, Arithmetic and Power 
Issues



FPGA: Programming
● Bluespec/Bluecheck

○ Generate Verilog from high level models
○ Testing

● The traditional way: Verilog, VHDL
● Well supported HLS: OpenCL, C, SystemC 
● Maxeler MaxJ

○ Embedded Language (In Java!) 

● Lava, Wired, Kansas Lava. York Lava
○ Embedded Languages (Haskell), generates VHDL

● Feldspar to FPGA
○ Is work in progress.



FPGA: How should it be used
● “Soft-core” (MicroBlaze). 
● Application specialised instruction sets. 
● Implement f in hardware.  



The Zynq ARM + FPGA System

DRAM

FPGA



The Zynq ARM + FPGA System

DRAM

FPGA

Xilinx Zynq Ultrascale+



The Zynq ARM + FPGA System
Retarget Obsidian for the Zynq:

● OpenCL generation, with FPGAs in mind, is work in progress. 
● But is this even a good idea ?



The Zynq ARM + FPGA System
Retarget Obsidian for the Zynq:

● Obsidian mimics the GPU hierarchy.
● OpenCL mimics the GPU hierarchy.
● On an FPGA we are not bound by a specific hierarchy (well..)!



The Zynq ARM + FPGA System
Retarget Obsidian Implement a new high/low level language for the Zynq:

● And for the GPU, Xeon Phi, CPU … 
● Allowing the programmer to specify computational hierarchies that are perfect 

for the application. 
● One high level program, many target platforms. 
● Describe how the programmer specified computation hierarchy maps to a 

fixed processing hierarchy. (Or accept best effort from an automatic 
transformation) 

● If interested in contributing in this exciting area, talk to us about a Master’s 
thesis project. 



“X on an FPGA” ?



The Future is Heterogeneous



CPU, GPU and FPGA
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CPU, GPU and FPGA
● Scheduling issues

○ Reconfiguration
○ Suitability
○ Data locality
○ Power 
○ Availability
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Heterogeneous Computing Challenges 
● Runtime systems.

○ What to execute where (CPU,XeonPhi, GPU, FPGA…).
○ When to reconfigure FPGA.
○ Scheduling 

■ for speed.
■ for low power consumption.
■ for total system utilisation.

● Programming (accessibility).
○ Languages, Libraries and Tools.

● This is another exciting area where you can contribute (Master’s thesis ?). 



The End



Obsidian: An Example
reduce :: Data a
   => Word32
   -> (a -> a -> a)
   -> Pull Word32 a
   -> Push Block Word32 a
reduce n f arr =
 do

execBlock $ do
 arr' <- compute (asBlock (fmap (seqRed f) (splitUp n arr)))
 red f arr'
where
  red f arr

| len arr == 1 = return (push arr)
| otherwise    =

    do let (a1,a2) = halve arr
         imm <- compute (zipWith f a1 a2)
         red f imm
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execBlock $ do
   arr' <- compute (asBlock (fmap (seqRed f) (splitUp n arr)))
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