
General Purpose
Computations on GPUs

Bo Joel Svensson
Division of Computer Engineering

Chalmers

Parallel Functional Programming 2016

Background

Challenges in Computer Architecture
● The Power wall.
● The Instruction level parallelism (ILP) wall.
● The Memory wall.

Challenges in Computer Architecture
● The Power wall.
● The Instruction level parallelism (ILP) wall.
● The Memory wall.

All of these lead to more complicated (from the programmer’s point of view) computer architectures.

The Power Wall
● More capable processors use more power.

○ It may not be possible to make use of all the resources in a chip at once. Parts of it needs to
be turned off to not become too hot (draw too much power).

○ (solution) Chips consisting of different kinds of special purpose (or general purpose). compute
capabilities, not all used at once (for example the big.LITTLE).

The ILP Wall
● It is now hard to push computer performance further by speeding up single

threaded execution by automatic ILP or by increasing the frequency.
● (solution) More, but simpler, cores. Accelerators.

The Memory Wall
● Processor performance and memory performance show diverging trends.
● (solution) Larger caches, more complicated memory hierarchies, programmer

managed scratch-pad memories.

Heterogeneous Systems

Node

An HPC node today:
● Processors (traditional CPUs)
● GPUs
● And/Or Xeon PHI

Upcoming:
● Field Programmable Gate Arrays

○ Xilinx Zynq Ultrascale+
○ Xeon + FPGA

Simple Programming
Model

Efficient code

Simple Programming
Model

Efficient code

Functional Programming

Domain Specific Languages

Simple Programming
Model

Efficient code

Functional Programming

Domain Specific Languages

Intermediate representations

Efficient code generators

GPUs

“X on the GPU”

“X on the GPU”
● 10x - 100x speedup.
● Very complicated.

NVIDIA Kepler (GK110)

Sandy Bridge

GPU: The Architecture

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Shared Memory

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Shared Memory

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Shared Memory

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Shared Memory

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Shared Memory

DRAM

MP 4MP 3MP 2MP 1

PE

Regs

PE

Regs

PE

Regs...
Instruction
unit

Shared memory

Global memory (DRAM)

GPU: Zoom in on an MP

CUDA: Concepts
● Threads

○ Executes in the PEs.

● Warps
○ 32 threads, one PC.

● Blocks
○ Group of threads that cooperates.
○ Can synchronize.
○ Shared Memory.

● The Grid
○ The collection of blocks.

CUDA: More details
● Threads

○ All threads are described by a single program (SIMT).

● Blocks
○ Up to 1024 cooperating threads per block.
○ Many blocks share an MP.
○ More Threads per block than processors per MP. (syncthreads)
○ 1,2 or 3d shaped iteration space.

● The Grid
○ Work is launched onto the GPU in a unit called a grid.
○ 1,2 or 3d grid of blocks.

Grid of Blocks of Threads

dim3 grid_dim(4,4,4);

Grid of Blocks of Threads

dim3 grid_dim(4,4,4); dim3 block_dim(4,4,4);

Launching a Grid
kernel<<<grid_dim,block_dim>>>(arg1,...,argn);

The Kernel Code
● One code executed by ALL threads of the grid.

○ Identifies its position in the grid/block using:
■ blockIdx.x, blockIdx.y, blockIdx.z.
■ threadIdx.x, threadIdx.y, threadIdx.z.

○ Can query the dimensions of the grid/block using:
■ gridDim.x, gridDim.y, gridDim.z.
■ blockDim.x, blockDim.y, blockDim.z.

○

CUDA: An Example Kernel

a0 a1 a2 an

b0 b1 b2 bn

r

CUDA: An Example Kernel
__global__ void dot(int* a, int* b, int* c) {
 __shared__ int tmp[THREADS_PER_BLOCK];

 int gid = threadIdx.x +
 blockIdx.x *
 blockDim.x;

 tmp[threadIdx.x] = a[gid] * b[gid];

 __syncthreads();

 /* REDUCE */
 if (threadIdx.x == 0) {

int sum = 0;
for (int i = 0; i < THREADS_PER_BLOCK; ++i)
 sum += tmp[i];
atomicAdd(c, sum);

 }
}

a0 a1 a2 an

b0 b1 b2 bn

r

CUDA: A Launch Example
dot<<<1000,1000>>>(a,b,result);

Functional GPU Programming

Haskell Based Embedded Languages
Accelerate Obsidian

Accelerate

Accelerate: An Example

dotp :: Num n => Vector n -> Vector n -> Acc (Scalar n)

dotp xs ys = let xs' = use xs

 ys' = use ys

 in fold (+) 0 (zipWith (*) xs' ys')

Accelerate: An Example

dotp :: Num n => Vector n -> Vector n -> Acc (Scalar n)

dotp xs ys = let xs' = use xs

 ys' = use ys

 in fold (+) 0 (zipWith (*) xs' ys')

zipWith

fold

Accelerate: An Example

zipWith

fold

Accelerate: High Level Optimisations

Fusion

Accelerate: High Level Optimisations

Fission

Split

Concat

Accelerate: Operations
Generate

Permute

Map

ZipWith

Fold

Scan

...

Accelerate: Array shapes
Shapes:

data Z = Z

data tail :. head = tail :. head

One dimensional shape:

Z :. Int

Two dimensional shape:

Z :. Int :. Int

myShape :: Z :. Int

myShape = Z :. 10

Accelerate Operations With Types
use :: Array sh e -> Acc (Array sh e)

map :: (Exp a -> Exp b) -> Acc (Array sh a) -> Acc (Array sh b)

zipWith :: (Exp a -> Exp b -> Exp c) -> Acc (Array sh a) -> Acc (Array sh b) -> Acc (Array sh c)

fold :: (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Array sh :. Int a) -> Acc (Array sh a)

Obsidian

Obsidian
● High/Low-level programming.
● Mimics the GPU hierarchy.
● Generate GPU kernels.
● Easily generate code variants.
● Expose parameters for auto-tuning.

○ Always a parameter: Number of “real” threads, Number of “real” blocks.

Obsidian: A small example
increment :: Num a => SPull a -> SPull a
increment arr = fmap (+1) arr

Obsidian: A small example
increment :: Num a => SPull a -> SPull a
increment arr = fmap (+1) arr

incrementKernel :: Num a => DPull a -> DPush Grid a
incrementKernel arr = asGrid $ fmap (push . increment) arr'
 where
 -- make a selection of how many elements to process per CUDA block
 arr' = splitUp 2048 arr

Obsidian: A small example
increment :: Num a => SPull a -> SPull a
increment arr = fmap (+1) arr

incrementKernel :: Num a => DPull a -> DPush Grid a
incrementKernel arr = asGrid $ fmap (push . increment) arr'
 where
 -- make a selection of how many elements to process per CUDA block
 arr' = splitUp 2048 arr

incrementKernel’ :: Num a => Word32 -> DPull a -> DPush Grid a
incrementKernel’ n arr = asGrid $ fmap (push . increment) arr'
 where
 arr' = splitUp n arr

Obsidian: Running the small example on the GPU
performInc :: IO ()
performInc =
 withCUDA $
 do
 kern <- capture 512 incrementKernel

 useVector (V.fromList [0..4096 :: Word32]) $ \i ->
 withVector 4096 $ \o ->
 do
 fill o 0

 o <== (2,kern) <> i

 r <- copyOut o
 lift $ putStrLn $ show r

Obsidian: Pull and Push arrays
● “Delayed” arrays.

○ A description of how to compute values.
○ A “compute” functions makes the arrays “real” in memory.

● Operations on pull/push arrays automatically fuse.
○ Unless “compute” is used between operations.

Pull Arrays
data Pull s a = Pull {pullLen :: s,

 pullFun :: EWord32 -> a}

Pull Arrays
data Pull s a = Pull {pullLen :: s,

 pullFun :: EWord32 -> a}

map f (Pull n ixf) = Pull n (f . ixf)

Pull Arrays
data Pull s a = Pull {pullLen :: s,

 pullFun :: EWord32 -> a}

Fusion:

arr = Pull n ixf

map f (map g arr) = map f (Pull n (g . ixf)

 = Pull n (f . g . ixf)

Push Arrays
data Push t s a = Push s (PushFun t a)

type PushFun t a = Writer a -> Program t ()

type Writer a = a -> EWord32 -> Program Thread ()

Push Arrays
data Push t s a = Push s (PushFun t a)

type PushFun t a = Writer a -> Program t ()

type Writer a = a -> EWord32 -> Program Thread ()

 map f (Push s p) = Push s $ \wf -> p (\e ix -> wf (f e) ix)

SPull, SPush, DPull, DPush
The size of an array can be either Word32 or Exp Word32

● Statically known size a requirement in kernels that use shared memory.
● Dynamic size allowed at the top level of the hierarchy (in multiples of the

block size).

Why two kinds of arrays ?
Pull Arrays:

● Efficient indexing.
● No efficient concatenation
● Consumer decides iteration pattern

Push Arrays:

● Efficient concatenation.
● No efficient indexing.
● Producer decides iteration pattern.

Obsidian: Programming the Hierarchy
Push Arrays have hierarchy level type parameter: Push t s a

● Thread, Warp, Block, Grid
● Influences how iteration pattern is realised in the generated CUDA code.

○ Sequential / parallel

Obsidian: Programming the Hierarchy
The type parameter seen earlier on
Push arrays and on Programs.

data Thread
data Step t

type Warp = Step Thread
type Block = Step Warp
type Grid = Step Block

Obsidian: Programming the Hierarchy
The type parameter seen earlier on
Push arrays and on Programs.

data Thread
data Step t

type Warp = Step Thread
type Block = Step Warp
type Grid = Step Block

type family LessThanOrEqual a b where
 LessThanOrEqual Thread Thread = True
 LessThanOrEqual Thread (Step m) = True
 LessThanOrEqual (Step n) (Step m) = LessThanOrEqual n m
 LessThanOrEqual x y = False

type a *<=* b = (LessThanOrEqual a b ~ True)

Obsidian: Programming the Hierarchy
class (t *<=* Block) => AsBlock t where
 asBlock :: SPull (SPush t a) ->
 SPush Block a
 asBlockMap :: (a -> SPush t b)
 -> SPull a
 -> SPush Block b

instance AsBlock Thread where
 asBlock = tConcat
 asBlockMap f = tConcat . fmap f

instance AsBlock Warp where
 asBlock = pConcat
 asBlockMap f = pConcat . fmap f

instance AsBlock Block where
 asBlock = sConcat
 asBlockMap f = sConcat . fmap f

Obsidian: Programming the Hierarchy
class (t *<=* Block) => AsBlock t where
 asBlock :: SPull (SPush t a) ->
 SPush Block a
 asBlockMap :: (a -> SPush t b)
 -> SPull a
 -> SPush Block b

instance AsBlock Thread where
 asBlock = tConcat
 asBlockMap f = tConcat . fmap f

instance AsBlock Warp where
 asBlock = pConcat
 asBlockMap f = pConcat . fmap f

instance AsBlock Block where
 asBlock = sConcat
 asBlockMap f = sConcat . fmap f

class (t *<=* Warp) => AsWarp t

Obsidian: Programming the Hierarchy
class (t *<=* Block) => AsBlock t where
 asBlock :: SPull (SPush t a) ->
 SPush Block a
 asBlockMap :: (a -> SPush t b)
 -> SPull a
 -> SPush Block b

instance AsBlock Thread where
 asBlock = tConcat
 asBlockMap f = tConcat . fmap f

instance AsBlock Warp where
 asBlock = pConcat
 asBlockMap f = pConcat . fmap f

instance AsBlock Block where
 asBlock = sConcat
 asBlockMap f = sConcat . fmap f

class (t *<=* Warp) => AsWarp t

asThread :: ASize l
 => Pull l (SPush Thread b)
 -> Push Thread l b

asGrid :: ASize l
 => Pull l (SPush Block a)
 -> Push Grid l a

Obsidian and Auto-Tuning

Compilation

Source code Compiler Machine
code

Compilation: Tuning framework

Source code Compiler Machine
codeSource code Compiler Machine
code

EvaluationInput

Tuning Framework
class TuneM m where
 -- | Get parameter by index.
 getParam :: ParamIdx -> m Int

type ParamIdx = Int

scoreIt :: (MonadIO m, TuneM m)
 => m (Maybe Result)
scoreIt = do
 threads <- getParam 0
 blocks <- getParam 1
 liftIO $ catch (
 do time <- timeIt threads blocks
 return $ Just
 $ Result ([threads,blocks],time)
)
 (\e -> do putStrLn (show (e :: SomeException))
 return Nothing
)

Obsidian: Tuning

● Auto-tuning
● Specialised code

variants

Obsidian: Tuning

● Exhaustive
● Random
● Simulated annealing
● Hill climbing

Mandelbrot

Obsidian: Tuning

● Exhaustive
● Random
● Simulated annealing
● Hill climbing

Histogram

Obsidian And Accelerate Conclusions

Accelerate

● High level programs.
○ High level optimisations.

● Entire applications.
● Multi-device RTS.

Obsidian

● Control
○ of what the GPU actually does.
○ of Shared Memory .

● Kernels.

High Performance Computing and FPGAs

● 1 or more CPUs.
● 0,1 or more GPUs.
● Xeon Phi.
● FPGA.

FPGA: What ?

FPGA: What ?

FPGA: What ?

Motivation

FPGA GPU CPU

Execution time 0.00787s 0.0858s 4.291s

Speed-up 545x 50x 1x

Dynamic power 20W 95W 40W

Total power 150W 225W 170W

Energy 1.1805J 19.305J 729.47J

Development time 60 days 3 days 1 day

Xian Tian, Khaled Benkrid: Monte-Carlo Simulation-Based Financial Computing on the Maxwell FPGA Parallel Machine

Motivation

FPGA GPU CPU

Execution time 0.00787s 0.0858s 4.291s

Speed-up 545x 50x 1x

Dynamic power 20W 95W 40W

Total power 150W 225W 170W

Energy 1.1805J 19.305J 729.47J

Development time 60 days 3 days 1 day

Xian Tian, Khaled Benkrid: Monte-Carlo Simulation-Based Financial Computing on the Maxwell FPGA Parallel Machine

Motivation

FPGA GPU CPU

Speed-up 29x 33x 1x

Power 18W 160W 125W

Efficiency (Msamples/J) 12.8 7.5 0.6

Victor Medeiros et.al: High Performance Implementation of RTM Seismic Modeling on FPGAs: Architecture, Arithmetic and Power
Issues

FPGA: Programming
● Bluespec/Bluecheck

○ Generate Verilog from high level models
○ Testing

● The traditional way: Verilog, VHDL
● Well supported HLS: OpenCL, C, SystemC
● Maxeler MaxJ

○ Embedded Language (In Java!)

● Lava, Wired, Kansas Lava. York Lava
○ Embedded Languages (Haskell), generates VHDL

● Feldspar to FPGA
○ Is work in progress.

FPGA: How should it be used
● “Soft-core” (MicroBlaze).
● Application specialised instruction sets.
● Implement f in hardware.

The Zynq ARM + FPGA System

DRAM

FPGA

The Zynq ARM + FPGA System

DRAM

FPGA

Xilinx Zynq Ultrascale+

The Zynq ARM + FPGA System
Retarget Obsidian for the Zynq:

● OpenCL generation, with FPGAs in mind, is work in progress.
● But is this even a good idea ?

The Zynq ARM + FPGA System
Retarget Obsidian for the Zynq:

● Obsidian mimics the GPU hierarchy.
● OpenCL mimics the GPU hierarchy.
● On an FPGA we are not bound by a specific hierarchy (well..)!

The Zynq ARM + FPGA System
Retarget Obsidian Implement a new high/low level language for the Zynq:

● And for the GPU, Xeon Phi, CPU …
● Allowing the programmer to specify computational hierarchies that are perfect

for the application.
● One high level program, many target platforms.
● Describe how the programmer specified computation hierarchy maps to a

fixed processing hierarchy. (Or accept best effort from an automatic
transformation)

● If interested in contributing in this exciting area, talk to us about a Master’s
thesis project.

“X on an FPGA” ?

The Future is Heterogeneous

CPU, GPU and FPGA

g

h

f

e

CPU, GPU and FPGA
● Scheduling issues

○ Reconfiguration
○ Suitability
○ Data locality
○ Power
○ Availability

g

h

f

e

CPU, GPU and FPGA
● Scheduling issues

○ Reconfiguration
○ Suitability
○ Data locality
○ Power
○ Availability

g

h

f

e

Heterogeneous Computing Challenges
● Runtime systems.

○ What to execute where (CPU,XeonPhi, GPU, FPGA…).
○ When to reconfigure FPGA.
○ Scheduling

■ for speed.
■ for low power consumption.
■ for total system utilisation.

● Programming (accessibility).
○ Languages, Libraries and Tools.

● This is another exciting area where you can contribute (Master’s thesis ?).

The End

Obsidian: An Example
reduce :: Data a
 => Word32
 -> (a -> a -> a)
 -> Pull Word32 a
 -> Push Block Word32 a
reduce n f arr =
 do

execBlock $ do
 arr' <- compute (asBlock (fmap (seqRed f) (splitUp n arr)))
 red f arr'
where
 red f arr

| len arr == 1 = return (push arr)
| otherwise =

 do let (a1,a2) = halve arr
 imm <- compute (zipWith f a1 a2)
 red f imm

Obsidian: An Example
reduce :: Data a
 => Word32
 -> (a -> a -> a)
 -> Pull Word32 a
 -> Push Block Word32 a
reduce n f arr =
 do

execBlock $ do
 arr' <- compute (asBlock (fmap (seqRed f) (splitUp n arr)))
 red f arr'
where
 red f arr

| len arr == 1 = return (push arr)
| otherwise =

 do let (a1,a2) = halve arr
 imm <- compute (zipWith f a1 a2)
 red f imm

Obsidian: An Example
reduce :: Data a
 => Word32
 -> (a -> a -> a)
 -> Pull Word32 a
 -> Push Block Word32 a
reduce n f arr =
 do

execBlock $ do
 arr' <- compute (asBlock (fmap (seqRed f) (splitUp n arr)))
 red f arr'
where
 red f arr

| len arr == 1 = return (push arr)
| otherwise =

 do let (a1,a2) = halve arr
 imm <- compute (zipWith f a1 a2)
 red f imm

