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What is testing about? 3

I Gain confidence in the correctness of your program.

I Show that common cases work correctly.

I Show that corner cases work correctly.

I Testing cannot prove the absence of bugs.
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Correctness 3

I When is a program correct?

I What is a specification?

I How to establish a relation between the specification and

the implementation?

I What about bugs in the specification?
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This lecture 3

I Equational reasoning with Haskell programs

I QuickCheck, an automated testing library/tool for Haskell
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Goals 3

I Understand how to prove simple properties using

equational reasoning.

I Understand how to define QuickCheck properties and how

to use QuickCheck.

I Understand how QuickCheck works and how to make

QuickCheck usable for your own larger programs.
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3.1 Equational reasoning
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Referential transparency 3.1

I “Equals can be substituted for equals”

I In other words: if an expression has a value in a context,

we can replace it with any other expression that has the

same value in the context without affecting the meaning

of the program.



[Faculty of Science
Information and Computing Sciences]

3-8

Referential transparency (contd.) 3.1

SML is (like most languages) not referentially transparent:

let val x = ref 0

fun f n = (x := !x + n; !x)

in f 1 + f 2

end

The expression evaluates to 4.

The value of f 1 is 1. But

let val x = ref 0

fun f n = (x := !x + n; !x)

in 1 + f 2

end

evaluates to 3.
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Referential transparency (contd.) 3.1

Also

let val x = ref 0

fun f n = (x := !x + n; !x)

in f 1 + f 1

cannot be replaced by

let val x = ref 0

fun f n = (x := !x + n; !x)

val r = f 1

in r + r
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Referential transparency in Haskell 3.1

I Haskell is referentially transparent.

I The SML example breaks down because Haskell has no

untracked side-effects.

do

x← newIORef 0

let f n = do modifyIORef x (+n); readIORef x

r ← f 1

s ← f 2

return (r + s)

The type of f is Int→ IO Int, not Int→ Int as in SML.
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Referential transparency in Haskell (contd.) 3.1

I Because of referential transparency, the definitions of

functions give us rules for reasoning about Haskell

programs.

I Properties regarding datatypes can be proved using

induction:

data [a] = [ ] | a : [a]

To prove ∀(xs :: [a]).P xs, we prove
I P [ ]
I ∀(x :: a) (xs :: [a]).P xs→ P (x : xs)



[Faculty of Science
Information and Computing Sciences]

3-12

Equational reasoning example 3.1

length :: [a]→ Int

length [ ] = 0

length (x : xs) = 1 + length xs

isort :: Ord a⇒ [a]→ [a]

isort [ ] = [ ]

isort (x : xs) = insert x (isort xs)

insert :: Ord a⇒ a→ [a]→ [a]

insert x [ ] = [x]

insert x (y : ys)

| x 6 y = x : y : ys

| otherwise = y : insert x ys

Theorem (Sorting preserves length)

∀(xs :: [a]).length (isort xs) ≡ length xs

Lemma

∀(x :: a) (ys :: [a]).length (insert x ys) ≡ 1 + length ys
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Proof of the Lemma 3.1

Lemma

∀(x :: a) (ys :: [a]).length (insert x ys) ≡ 1 + length ys

Proof by induction on the list.

Case [ ]:

length (insert x [ ])

≡ { Definition of insert }
length [x]

≡ { Definition of length }
1 + length [ ]
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Proof of the Lemma (contd.) 3.1

Lemma

∀(x :: a) (ys :: [a]).length (insert x ys) ≡ 1 + length ys

Case y : ys, case x 6 y:

length (insert x (y : ys))

≡ { Definition of insert }
length (x : y : ys)

≡ { Definition of length }
1 + length (y : ys)
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Proof of the Lemma (contd.) 3.1

Lemma

∀(x :: a) (ys :: [a]).length (insert x ys) ≡ 1 + length ys

Case y : ys, case x> y:

length (insert x (y : ys))

≡ { Definition of insert }
length (y : insert x ys)

≡ { Definition of length }
1 + length (insert x ys)

≡ { Induction hypothesis }
1 + (1 + length ys)

≡ { Definition of length }
1 + length (y : ys)



[Faculty of Science
Information and Computing Sciences]

3-16

Proof of the Theorem 3.1

Theorem

∀(xs :: [a]).length (isort xs) ≡ length xs

Proof by induction on the list.

Case [ ]:

length (isort [ ])

≡ { Definition of isort }
length [ ]
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Proof of the Theorem (contd.) 3.1

Theorem

∀(xs :: [a]).length (isort xs) ≡ length xs

Case x : xs:

length (isort (x : xs))

≡ { Definition of isort }
length (insert x (isort xs))

≡ { Lemma }
1 + length (isort xs)

≡ { Induction hypothesis }
1 + length xs

≡ { Definition of length }
length (x : xs)
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Equational reasoning summary 3.1

I Equational reasoning can be an elegant way to prove

properties of a program.

I Equational reasoning can be used to establish a relation

between an “obivously correct” Haskell program (a

specification) and an efficient Haskell program.

I Equational reasoning is usually quite lengthy.

I Careful with special cases (laziness):
I undefined values;
I infinite values

I It is infeasible to prove properties about every Haskell

program using equational reasoning.
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Other proof methods 3.1

I Type systems.

I Proof assistants.
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3.2 QuickCheck
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QuickCheck 3.2

I QuickCheck is a Haskell library developed by Koen

Claessen and John Hughes.

I An embedded domain-specific language (EDSL) for

defining properties.

I Automatic datatype-driven generation of random test

data.

I Extensible by the user.

I Shrinks failing test cases.
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Using QuickCheck 3.2

To use QuickCheck in your program:

import Test.QuickCheck

The simplest interface is to use

quickCheck :: Testable prop⇒ prop→ IO ()

class Testable prop where

property :: prop→ Property

instance Testable Bool

instance (Arbitrary a,Show a,Testable prop)⇒
Testable (a→ prop)
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Recap: Classes and instances 3.2

I Classes declare predicates on types.

class Testable prop where

property :: prop→ Property

Here, any type can either be Testable or not.

I If a predicate holds for a type, this implies that the class

methods are supported by the type.

For any type prop such that Testable prop, there is a

method property :: prop→ Property.

Outside of a class declaration, Haskell denotes this type as

property :: Testable prop⇒ prop→ Property
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Recap: Classes and instances (contd.) 3.2

I Instances declare which types belong to a predicate.

instance Testable Bool

instance (Arbitrary a,Show a,Testable prop)⇒
Testable (a→ prop)

Booleans are in Testable.

Functions a→ prop are in Testable if prop is Testable and

a is in Arbitrary and in Show.

I Instance declarations have to provide implementations of

the class methods (in this case, of property), as a proof

that the predicate does indeed hold for the type.

I Other functions that use class methods inherit the class

constraints:

quickCheck :: Testable prop⇒ prop→ IO ()
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Nullary properties 3.2

instance Testable Bool

sortAscending :: Bool

sortAscending = sort [2, 1] = = [1, 2]

sortDescending :: Bool

sortDescending = sort [2, 1] = = [2, 1]

Running QuickCheck:

Main〉 quickCheck sortAscending

+++ OK, passed 100 tests.

Main〉 quickCheck sortDescending

*** Failed! Falsifiable (after 1 test):
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Nullary properties (contd.) 3.2

I Nullary properties are static properties.

I QuickCheck can be used for unit testing.

I By default, QuickCheck tests 100 times (which is wasteful

for static properties, but configurable).
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Functional properties 3.2

instance (Arbitrary a,Show a,Testable prop)⇒
Testable (a→ prop)

sortPreservesLength :: ([Int]→ [Int])→ [Int]→ Bool

sortPreservesLength isort xs = length (isort xs) = = length xs

Main〉 quickCheck (sortPreservesLength isort)

+++ OK, passed 100 tests.

Read parameterized properties as universally quantified.

QuickCheck automatically generates lists of integers.
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Another sorting function 3.2

import Data.Set

setSort = toList ◦ fromList

Main〉 quickCheck (sortPreservesLength setSort)

*** Failed! Falsifiable (after 6 tests and 2 shrinks):

[1, 1]

I The function setSort eliminates duplicate elements,

therefore a list with duplicate elements causes the test to

fail.

I QuickCheck shows evidence of the failure, and tries to

present minimal test cases that fail (shrinking).
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How to fully specify sorting 3.2

Property 1

A sorted list should be ordered:

sortOrders :: [Int]→ Bool

sortOrders xs = ordered (sort xs)

ordered :: Ord a⇒ [a]→ Bool

ordered [ ] = True

ordered [x] = True

ordered (x : y : ys) = x 6 y ∧ ordered (y : ys)



[Faculty of Science
Information and Computing Sciences]

3-30

How to fully specify sorting (contd.) 3.2

Property 2

A sorted list should have the same elements as the original list:

sortPreservesElements :: [Int]→ Bool

sortPreservesElements xs = sameElements xs (sort xs)

sameElements :: Eq a⇒ [a]→ [a]→ Bool

sameElements xs ys = null (xs \\ ys) ∧ null (ys \\ xs)
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More information about test data 3.2

collect :: (Testable prop,Show a)⇒ a→ prop→ Property

The function collect gathers statistics about test cases. This

information is displayed when a test passes:

Main〉 let p = sortPreservesLength isort

Main〉 quickCheck (λxs→ collect (null xs) (p xs))

+++ OK, passed 100 tests:

92% False

8% True
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More information about test data (contd.) 3.2

Main〉 quickCheck (λxs→ collect (length xs ‘div‘ 10) (p xs))

+++ OK, passed 100 tests:

31% 0

24% 1

16% 2

9% 4

9% 3

4% 8

4% 6

2% 5

1% 7
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More information about test data (contd.) 3.2

In the extreme case, we can show the actual data that is

tested:

Main〉 quickCheck (λxs→ collect xs (p xs))

+++ OK, passed 100 tests:

6% [ ]

1% [9, 4,−6, 7]

1% [9,−1, 0,−22, 25, 32, 32, 0, 9, . . .

. . .

Question

Why is it important to have access to the test data?
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Implications 3.2

The function insert preserves an ordered list:

implies :: Bool→ Bool→ Bool

implies x y = ¬ x ∨ y

Problematic:

insertPreservesOrdered :: Int→ [Int]→ Bool

insertPreservesOrdered x xs =

ordered xs ‘implies‘ ordered (insert x xs)
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Implications (contd.) 3.2

Main〉 quickCheck insertPreservesOrdered

+++ OK, passed 100 tests.

But:

Main〉 let iPO = insertPreservesOrdered

Main〉 quickCheck (λx xs→ collect (ordered xs) (iPO x xs))

+++ OK, passed 100 tests.

88% False

12% True

Only 12 lists have really been tested!
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Implications (contd.) 3.2

The solution is to use the QuickCheck implication operator:

(=⇒) :: (Testable prop)⇒ Bool→ prop→ Property

instance Testable Property

The type Property allows to encode not only True or False,

but also to reject the test case.

iPO :: Int→ [Int]→ Property

iPO x xs = ordered xs =⇒ ordered (insert x xs)

Now we get:

Main〉 quickCheck (λx xs→ collect (ordered xs) (iPO x xs))

*** Gave up! Passed only 43 tests (100% True).



Configuring QuickCheck

data Args = Args {

replay :: Maybe (StdGen, Int)

maxSuccess :: Int

maxDiscard :: Int

maxSize :: Int

}

stdArgs :: Args

stdArgs = Args {replay = Nothing,

maxSuccess = 100,

maxDiscard = 500,

maxSize = 100}

quickCheckWith :: Testable prop => Args -> prop -> IO ()

Increasing the number of discarded tests may help.
Better solution: use a custom generator (discussed next).

Patrik Jansson, FP group, Chalmers and GU AFP lecture 6: Correctness and testing
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Generators 3.2

I Generators belong to an abstract data type Gen. Think of

Gen as a restricted version of IO. The only effect

available to us is access to random numbers.

I We can define our own generators using another

domain-specific language. We can define default

generators for new datatypes by defining instances of

class Arbitrary:

class Arbitrary a where

arbitrary :: Gen a

shrink :: a→ [a]
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Combinators for generators 3.2

choose :: Random a⇒ (a, a)→ Gen a

oneof :: [Gen a]→ Gen a

frequency :: [(Int,Gen a)]→ Gen a

elements :: [a]→ Gen a

sized :: (Int→ Gen a)→ Gen a
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Simple generators 3.2

instance Arbitrary Bool where

arbitrary = choose (False,True)

instance (Arbitrary a,Arbitrary b)⇒ Arbitrary (a, b) where

arbitrary = do

x← arbitrary

y← arbitrary

return (x, y)

data Dir = North | East | South |West

instance Arbitrary Dir where

arbitrary = elements [North,East,South,West]
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Generating numbers 3.2

I A simple possibility:

instance Arbitrary Int where

arbitrary = choose (−20, 20)

I Better:

instance Arbitrary Int where

arbitrary = sized (λn→ choose (−n, n))

I QuickCheck automatically increases the size gradually, up

to the configured maximum value.
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Generating trees 3.2

A bad approach to generating more complex values is a

frequency table:

data Tree a = Leaf a | Node (Tree a) (Tree a)

instance Arbitrary a⇒ Arbitrary (Tree a) where

arbitrary =

frequency [(1, liftM Leaf arbitrary),

(2, liftM2 Node arbitrary arbitrary)]

Here:

liftM :: (a→ b) → Gen a→ Gen b

liftM2 :: (a→ b→ c)→ Gen a→ Gen b→ Gen c

Termination is unlikely!
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Generating trees (contd.) 3.2

instance Arbitrary a⇒ Arbitrary (Tree a) where

arbitrary = sized arbitraryTree

arbitraryTree :: Arbitrary a⇒ Int→ Gen (Tree a)

arbitraryTree 0 = liftM Leaf arbitrary

arbitraryTree n = frequency [(1, liftM Leaf arbitrary),

(4, liftM2 Node t t)]

where t = arbitraryTree (n ‘div‘ 2)

Why a non-zero probability for Leaf in the second case of

arbitraryTree?
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Shrinking 3.2

The other method in Arbitrary is

shrink :: (Arbitrary a)⇒ a→ [a]

I Maps each value to a number of structurally smaller

values.

I Default definition returns [ ] and is always safe.

I When a failing test case is discovered, shrink is applied

repeatedly until no smaller failing test case can be

obtained.
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Defining Arbitrary generically 3.2

I Both arbitrary and shrink are examples of

datatype-generic functions – they can be defined for

(almost) any Haskell datatype in a systematic way.

I Haskell does not provide any way to write down such an

algorithm.

I Many extensions and tools do (cf. course on Generic

Programming in block 4).
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GHCi pitfall 3.2

All lists are ordered?

Main〉 quickCheck ordered

+++ OK, passed 100 tests.

Use type signatures in GHCi to make sure a sensible type is

used!

Main〉 quickCheck (ordered :: [Int]→ Bool)

*** Failed! Falsifiable (after 3 tests and 2 shrinks):

[0,−1]
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Loose ends 3.2

I Haskell can deal with infinite values, and so can

QuickCheck. However, properties must not inspect

infinitely many values. For instance, we cannot compare

two infinite values for equality and still expect tests to

terminate. Solution: Only inspect finite parts.

I QuickCheck can generate functional values automatically,

but this requires defining an instance of another class

CoArbitrary. Also, showing functional values is

problematic.

I QuickCheck has facilities for testing properties that

involve IO, but this is more difficult than testing pure

properties.
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4.1 Haskell Program Coverage
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Reachable uncovered code 4.1

Program code can be classified:

I unreachable code: code that simply is not used by the

program, usually library code

I reachable code: code that can in principle be executed by

the program

Reachable code can be classified further:

I covered code: code that is actually executed during a

number of program executions (for instance, tests)

I uncovered code: code that is not executed during testing

Uncovered code is untested code – it could be executed, and it

could do anything!
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Introducing HPC 4.1

I HPC (Haskell Program Coverage) is a tool – integrated

into GHC – that can identify uncovered code.

I Using HPC is extremely simple:
I Compile your program with the flag -fhpc.
I Run your program, possibly multiple times.
I Run hpc report for a short coverage summary.
I Run hpc markup to generate an annotated HTML version

of your source code.
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What HPC does 4.1

I HPC can present your program source code in a

color-coded fashion.

I Yellow code is uncovered code.

I Uncovered code is discovered down to the level of

subexpressions! (Most tools for imperative language only

give you line-based coverage analyis.)

I HPC also analyzes boolean expressions:
I Boolean expressions that have always been True are

displayed in green.
I Boolean expressions that have always been False are

displayed in red.
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QuickCheck and HPC 4.1

QuickCheck and HPC interact well!

I Use HPC to discover code that is not covered by your

tests.

I Define new test properties such that more code is

covered.

I Reaching 100% can be really difficult (why?), but strive

for as much coverage as you can get.


