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Recap

• Greedy & Dynamic Programming
extend solutions from smaller sub-instances incrementally to larger sub-

instances, up to the full instance.

• Divide & Conquer 
follows the pattern of reducing a given problem to smaller instances of itself

BUT

it makes jumps rather than incremental steps.
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Recap

• Divide-and-conquer
• Split problem instance into a few significantly smaller sub-instances. 

• Sub-instances are solved, independently, in the same way (recursion).

• Combine partial solutions to sub-instances into an overall solution.

• Most common usage
• Break up problem instance of size n into two equal parts of size ½n.

• Solve two parts recursively.

• Combine two solutions into overall solution in linear time.



4

Today’s Lecture

• Important technique for Searching & Sorting
• Binary Search O(log n) (last lecture) 

• Brute force Sorting, e.g., Bubble sort :  O(n2).

• Divide-and-conquer:  O(n log n).



Bubble Sort

• Scan the list of elements from left to right 
whenever two neighbored elements are in the wrong order, swap them. 

http://www.csit.parkland.edu/~mbrandyberry/CS1Java/images/Lesson28/BubbleSortInteration.jpg



Bubble Sort

• Every pass puts one elements 
to its proper place & 
reduces the instance size by 1
 n(n-1)/2 
 O(n2)



Bubble Sort

• In place: Needs only one array of size n for everything, except, 
possibly a few memory units.

• Best: In the first pass, if we don't have to make any swaps, that means 
that the array is sorted already.

• Worst: if many elements are far from their proper places(reverse 
order), because the algorithm moves them only step by step.
Insertion Sort to overcome



Insertion Sort

• After k rounds of Insertion Sort, the 
first k elements (k = 1,…,n) are 
sorted. 

• To insert the (k + 1)st element we 
search for the correct position, using 
binary search.
 O(n log n)?
 we may be forced to move O(k) 

elements in the k-th round,
giving again an overall 
time complexity of O(n2).



Insertion Sort

• Idea: We can avoid moving the elements
 Insert an element in O(1) time at a desired position using doubly linked list.

• But, how do we apply Binary Search without indices?
 We have to apply linear search, and once again: O(n2) for all n rounds.

• However, O(n log n) sorting algorithms are known, as we already know
Divide-and-conquer



10

Mergesort

• How it works:
• arbitrary split the set into two halves 

• recursively sort the two halves separately 

• merge the two sorted halves

• Merging the two sorted halves involves comparing the elements to 
each other
scan both ordered sequences simultaneously and always move the currently 

smallest element to the next position in the result sequence, implies O(n)
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Mergesort Example

1 32 42 5 66

2 64 5 1 2 63

5 2 64 1 3 62

5 2 64

2 5 64

1 3

1 3

62

62

5 62 4

5 62 14 3 62

1 3 62
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Time Complexity for Mergesort

Recurrence Relation: 

• Let T(n) be worst case time on a sequence of n elements

• If n = 1, then T(n) = O(1) (constant)

• If n > 1, then T(n) = 2 T(n/2) + O(n)
• two sub-problems of size n/2 each that are solved recursively
• O(n) time to do the merge

• Solving the recurrence gives T(n) = O(n log n)

• Remember general result from the Master Theorem
 T(n) = aT(n/b) + cnk , and for a= bk it gives O(nk log n)
For Mergesort, we have a=2, b=2 and k= 1.
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Caveat

• Simple Structure but not the fastest sorting algorithm in practice
• Too many copy operations (In every merging phase on every recursion level we have to move 

all elements of the merged subsets into a new array. )

• NOT in place
• Additional memory required, while n could be very large in practice.

• Other alternatives with O(n log n) time
• Different hidden constants factors
• Hard to analyze theoretically
• runtime experiments can figure out what is really faster.

• Remark: our Skyline algorithm from the previous lecture implicitly uses Mergesort to sort 
all endpoints of the rectangles.
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Quicksort

• How it works:
• choose one element to be the pivot/ splitter, called p

• put all the elements < p, and those > p in two different subsets 

• recursively sort the two subsets and concatenate putting p in between 

• In place

• Conquer phase trivial

• Implementation of Divide makes quick sort - quick
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Time Complexity for Quicksort

• Worst case: the splitter is always the minimum or maximum element 
of the set, O(n2) is needed.

• Only careful selection of the splitter can guarantee the better bound.

• If the splitters would exactly halve the sets on every recursion level, 
we have our standard recursion: 
T(n) = 2 T(n/2) + O(n)

With solution: T(n) = O(n log n)
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Ideal Splitter for Quicksort

• Rank of an element: the position of this element if the set were already sorted.

• Median: Element with rank n/2

• Computing Median?
• Sort and read off the element of rank n/2

• Stupid idea… sorting is the actual problem for which we need to find out Median.

• A splitter is selected at random!
• the worst case (rank nearly 1 or n) is very unlikely. 

• The splitters will mostly have ranks in the middle.

 reasonably balanced partitions in two sets.

 O(n log n) time is needed on expectation.

• In practice, chose three random elements and take their median as the splitter.
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Center of a Point Set on the Line

Distance: Walking or driving distance along the street, not the Euclidean distance.

Median of the given coordinates, not the average.
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Selection and Median Finding

• Given: A set of n elements, where an order relation is defined, and an 
integer k.

• Goal: Output the element of rank k, that is, the kth smallest element.

• Median: Special case in Selection problem, k := n/2
often better suited as a “typical" value than the average, because it is robust against 

outliers.

• Wealth in a population
Mean vs. Median
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Algorithm for Selection and Median Finding

• Choose: a random splitter s and compare all elements to s in O(n) time to 
get rank r of s.

• Decide:

• If r > k then throw out s and all elements larger than s. REPEAT

• If r < k then throw out s and all elements smaller than s, and set k := k-r REPEAT

• If r = k then return s. STOP 

• Time Complexity
• Given the splitters are always in the middle: T(n) = T(n/2) + O(n)

T(n) = aT(n/b) + cnk , and for a < bk it gives O(nk)

We have a=1, b=2 and k= 1, therefore we get: O(n)

O(n) is expected time, worst case could still be O(n2)

Fast Algorithm: Intuition is that Selection needs much less information than Sorting.
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Algorithm for Selection and Median Finding

• A deterministic divide-and-conquer, with O(n) time exists
Complicated

More importantly, the hidden constant in O(n) is large

Practically, random splitter algorithm is better
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Information Flow and Optimal Time Bounds

• One of our primary goals is to make algorithms as fast as possible.
How good are our time bounds for sorting and searching algorithms?

• Searching:
• Find a specific element in an ordered set of size n

• Comparisons counted as the elementary operations

• Binary Search: log2 n comparisons of elements 

• Claim: No other algorithm with comparisons as elementary operations can 
have a better worst-case bound.
Claim holds due to the information-theoretic argument
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Information Flow and Optimal Time Bounds

• Binary Search: log2 n comparisons of elements 

• Claim: No other algorithm with comparisons as elementary operations can 
have a better worst-case bound.
Claim holds due to the information-theoretic argument

• How much information do we gain from our elementary operation?
Binary Answer (“smaller” or “larger”), splitting the set of possible results in two subsets for 

which either of the answers is true.

worst case: the answer is true for the larger subset, always

candidate solutions are reduced by a factor at most 2

n possible solutions in the beginning, any algorithm needs at least log2 n comparisons in the 
worst case.

• such arguments are used to define the lower bound on the execution of a 
computation based on the rate at which information can be accumulated.
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Information Flow and Optimal Time Bounds

• Sorting: We have O(n log2 n) algorithms. 

• Claim: No other algorithm with comparisons as elementary operations can 
have a better worst-case bound.
• The n elements can be ordered in n! possible ways, and only one of them is the 

correct order

• Claim holds due to a similar reasoning as for Searching
Any sorting algorithm can be forced to use log2 n! comparisons

Calculation shows that  log2 n! is n log2 n subject to a constant factor
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Information Flow and Optimal Time Bounds

• Selection Problem: O(n)  

• Reasoning for Searching does not apply here
• O (log2 n) would be a very poor lower bound

• O(n) is optimal
• No order known before hand, ALL the n elements needs to be read 

• Every change in the instance can change the result
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Information Flow and Optimal Time Bounds

• Faster Algorithms for special cases:

• Bucket Sort: O(m + n)  
n elements come from a fixed range of m different numbers. 

• O(n) sorting in lexicographic order 
• Words defined over a fixed alphabet 

• Total length of the given words: n

• Do these two results contradict?
• NO!

• ?

• Because…


