
Algorithms. Lecture Notes 3

An Algorithm for Weighted Interval Scheduling

After the Interval Scheduling success we dare to attack a more general prob-
lem: Weighted Interval Scheduling. Let us try and follow the Erliest End
First algorithm: Sort the intervals such that f1 < f2 < . . . < fn. Because of
the different weights vi it is no longer true that we can always put the first
interval in an optimal solution X. This interval could have a small weight
and intersect some later, more profitable intervals. This makes the prob-
lem essentially more difficult than Interval Scheduling. But can we extend
solutions of smaller instances to larger instances in some other way?

We may decide for each interval in the sequence to add it to X or not.
This sounds like exhaustive search. However, a striking observation regard-
ing the “interval structure” of the problem limits this combinatorial explo-
sion: Once we have decided the status the first j intervals and obtained
several possible sets of disjoint intervals with the same rightmost fi (i ≤ j),
it suffices to keep only one of these partial solutions, namely one with max-
imum total weight. (This is a crucial moment! Make sure that you fully
understand why this is correct.) Hence, at any time we have to memoize
at most n partial solutions (one for every fi), rather than some exponential
number.

Now we state the resulting algorithm, along with the correctness argu-
ments, in a more formal notation. For j = 1, . . . , n, let OPT (j) denote
the maximum weight we can achieve by selecting disjoint intervals from
the first j intervals, i.e., from those with endpoints f1 < f2 < . . . < fj .
We will inductively compute every OPT (j) from the previously computed
OPT (i), i < j. Trivially, we have OPT (1) = v1. Now suppose that all
OPT (i), i < j, are already known. For the jth interval [sj , fj ] we have
two options: to add it to the solution or not. If we don’t, then the best
total value is, clearly, the maximum of all OPT (i), i < j. (There is no rea-
son to consider any partial solution worse than that.) Even simpler: Since

1



OPT (1) ≤ OPT (2) ≤ OPT (3) ≤ . . ., the optimum is OPT (j − 1) in this
case. If we decide to put [sj , fj ] in the solution, we can add vj to the total
value, but we have to make sure that the new interval does not intersect an
earlier one. For this step we need some auxiliary function: Let p(j) be the
largest index i such that fi < sj . Then we can take the known solution with
value OPT (p(j)) and add the new interval. Altogether we have shown that
the following formula is correct:

OPT (j) = max{OPT (j − 1), OPT (p(j)) + vj}.

This part of the algorithm amounts to a simple for-loop, with all OPT (j)
stored in an array. Of course, prior to this calculation we must compute
and store all the p(j) in another array. (The vj , sj , fj are already given
in arrays.) It is easy to compute the p(j) in a single scan: We also sort
the sj in ascending order. Then we determine, for every j, the largest
fi < sj . Since we have sorted the sj , it suffices to move a pointer in the
sorted array of the fi. Hence we can compute all p(j) in O(n) time, plus
the time for sorting. The for-loop that computes the OPT (j) values needs
O(n) time; this should be obvious: In every iteration we do one addition
and one comparison. (Here we assume that addition and comparison of two
numbers are elementary operations.)

Note that the formula in the for-loop is recursive: OPT (j) is computed
by recurring to function values for smaller arguments. But beware: It would
be a big practical mistake to implement this formula in a recursive fashion,
i.e., as a subroutine with recursive calls to itself! What would happen?
Every call creates two new calls, so that the process splits up into a tree of
independent calculations, where the same OPT (j) are computed over and
over again in many different branches (unless our compiler is optimized in
the way that it recognizes repeated calls with the same input parameter
and just returns the function value). The time would be exponential, and
we abandon the whole idea that made the algorithm efficient, namely that
every OPT (j) needs to be computed only once. This example illustrates the
importance of understanding the structure of an algorithm. It is not enough
to hack formulas in the computer.

Now, have we solved our problem? No. We have computed OPT (n),
but how do we get a subset of disjoint intervals that realizes this profit?
An obvious idea is: Whenever we compute and store a new value OPT (j),
we also store a corresponding set of intervals. (We know whether the jth
interval has been added or not.) However, this would require many copy

2



operations and add a factor O(n) to our time bound, resulting in O(n2) time.
Compared to exponential time this is still good, however, unnecessarily slow.
Surprisingly we can construct a solution much faster, using only the stored
values OPT (j): Remember how we obtained OPT (n). We compared two
values, and depending on which was larger, we took the nth interval or not.
Only by reviewing the OPT values we see which decision had led to the
optimum. Next we review either OPT (j − 1) or OPT (p(j)) in the same
way, and we find out whether the considered interval was taken or not. And
so on. In other words, we trace back the sequence of optimal decisions. This
procedure gives us some optimal solution in another O(n) steps.

Dynamic Programming versus Greedy

The scheme used in the above algorithm is called dynamic programming,
mainly for historical reasons. It can be characterized as follows.

For a given instance of a problem, we consider all solutions of sub-
instances that may be part of an optimal overall solution. It is enough
to keep one optimal solution to every sub-instance. These solutions are
extended to larger sub-instances in an incremental fashion. A recursion for-
mula specifies how to compute the optimal value from the already known
values for smaller sub-instances.

This approach works well if we can limit the number of sub-instances
to consider, ideally by a polynomial bound. (This distinguishes dynamic
programming from exhaustive search.) These sub-instances are often defined
by some natural restrictions, like the number of items, or some size bound.

An array is filled step by step with the optimal values for the sub-
instances. The time complexity is simply the size of this array, multiplied by
the time needed to compute each value. Although this array displays only
the values of optimal solutions, an actual solution is easy to reconstruct in
a backtracing procedure where we examine on which way the optimum
has been reached. The time for backtracing is smaller than the time for
computing the optimal values, as we have to trace back only one path in the
array.

This outline may still appear a bit nebulous. The best way to fully
understand dynamic programming is to study a number of problem examples
of different nature, as we will do now. At some point one should notice that
the basic scheme is always the same, only the recursion formula and other
specific details depend on the problem.

3



Dynamic programming can be viewed as restricted exhaustive search,
but also as an extension of the greedy paradigm. Instead of following only
one path of currently optimal decisions, which may or may not lead to an
optimal overall solution, we follow all such paths that might bring us to the
optimum. Of course, this is feasible only if there are not too many paths
to follow. It is very rewarding to learn this technique. Whereas greedy
algorithms work only for relatively few problems, dynamic programming
has considerably more applications. Our examples are taken from different
domains.

A new feature of the next examples is that we will need two indices
rather than one, which is quite typical. We will also see that the recursion
formula is not always a numerical function. It can also have Boolean values.

Problem: Knapsack

Given: a knapsack of capacity W , and n items, where the ith item has size
(or weight) wi and value vi.

Goal: Select a subset S of these items that fits in the knapsack (i.e., with∑
i∈S wi ≤W ) and has the largest possible sum of values v =

∑
i∈S vi.

Motivations:

• Packing goods of high value (or high importance) in a container.

• Allocating bandwith to messages in a network.

• Placing files in fast memory. The values may indicate access frequen-
cies.

• In a simplified model of a consumer, the capacity is a budget, the
values are utilities, and the consumer asks himself what he could buy
to maximize his happiness.

Problem: Subset Sum

Given: n numbers wi, (i = 1, . . . , n) and another number W . (All wi are
positive, and not necessarily distinct.)

4



Goal: Select a subset S of the given numbers, such that
∑

i∈S wi is as large
as possible, but no larger than W . In particular, find out whether there is
even a solution with

∑
i∈S wi = W .

Motivations:

• This is a special case of the Knapsack problem where vi = wi for all i.
The goal is to make use of the capacity as good as possible.

• Manufacturing: Suppose that we want to cut up n pieces of lengths wi

(i = 1, . . . , n), and among our raw materials there is a piece of length
W . How can we cut off some of the desired lengths, so that as little
as possible of this raw material is left over?

• Political decisions: A committee from several countries makes deci-
sions by weighted majority, where the weight of each country is deter-
mined by, e.g., its population size. Can it happen that countries with
exactly half of the weight say yes/no?

Problem: Sequence Comparison (or String Editing)

Given: two strings A = a1 . . . an and B = b1 . . . bm, where the ai, bj are
characters from a fixed, finite alphabet.

Goal: Transform A into B by a minimum number of edit steps. An edit
step is to insert or delete a character, or to replace a character with another
one.

The edit distance of A and B is the minimum number of necessary edit
steps. The problem can be reformulated as follows. We define a gap symbol
that does not already appear in the alphabet. An alignment of A and B is a
pair of strings A′ and B′ of equal length, obtained from A and B by inserting
gaps before, after or between the symbols. A mismatch in an alignment is a
pair of different symbols (real symbols or gaps) at the same position in A′

and B′. Then, our problem is equivalent to computing an alignment of A
and B with a minimum number of mismatches.

Generalized versions of the problem assign costs to the different edit
steps. The costs may even depend on the characters.

5



Motivations:
Searching and information retrieval: Finding approximate occurrences

of keywords in texts. Keywords are aligned to substrings of the text. Mis-
matches can stem from misspellings or from grammatical forms of words.

Archiving: If several, slightly different versions of the same document
exist, and all of them shall be stored, it would be a waste of space to store
the complete documents as they are. It suffices to store one master copy, and
the differences of all versions compared to this master copy. The deviations
of any document from the master copy are described in a compact way by
a minimum sequence of edit steps.

Molecular biology: Comparison of DNA or protein sequences, searching
for variants, computing evolutionary distances, etc.

Problem: Segmentation

This is a generic scheme of problems, rather than one specific problem. Let
f be some “easily computable” function that assigns a positive real number
to every possible sequence of items. These items can be numbers, characters,
or other objects.

Given: a sequence (x1, . . . , xn) of items.

Goal: Partition the sequence into segments (xi, . . . , xj) so that the sum of
f((xi, . . . , xj)) of all these segments is maximized/minimized.

Motivations:
f is interpreted as a quality measure or a penalty for segments. Our

segmentation shall maximize the total quality, or minimize the penalty. We
mention a few concrete problem examples:

Data analysis: A sequence of real numbers shall be partitioned into seg-
ments that ascend or descend almost linearly. The penalty for every segment
is measured by the deviation from the closest linear function (regression line)
by, e.g., the sum-of-sqares error. (This problem is treated in Section 6.4 of
the course book.)

Parsing: A text without spaces shall be partitioned into words. The
penalty for a segment is, e.g., its edit distance to the most similar real word
in a dictionary.

6


