
Algorithms. Lecture Notes 12

Shortest Paths Again

We have already solved the Single Source Shortest Path problem in the case
when all edge lengths are equal, as a byproduct of BFS. For the case of gen-
eral positive edge lengths we need to extend the idea of BFS appropriately.

Let s denote the source node. First of all, it is clear that d(s, s) = 0.
Now let x 6= s be a node closest to s, that is, l(s, x) is minimal. Then
we have d(s, x) = l(s, x), since no path from s to x other than the single
edge (s, x) can be shorter. In an attempt to generalize this observation, we
may want to look for an algorithm that determines the kth closest node, for
k = 1, 2, 3, . . .. The first two steps were simple. The key question is: Can
we efficiently obtain the kth closest node z, provided that we already know
the set S of the k−1 closest nodes, along with their correct distances d(s, x)
for all x ∈ S?

To analyze the situation, consider a shortest path P from s to z. The
crucial point is that all nodes on P except z are already in S. If this were
not true, some node y 6= z on P would be outside S, but the subpath of P
from s to y would be a shortest path from s to y, hence d(s, y) < d(s, z),
contradicting the choice of z as the kth closest node.

Hence, in order to identify z, it suffices to extend a shortest path from
s to some x ∈ S by one more edge. But how do we find the correct x
and z? We may simply try all candidate pairs: We compute the minimum
of all d(s, x) + l(x, z), where x ∈ S, z /∈ S. Then we move to S a node
z that minimizes this sum. At this moment we also know that d(s, z) =
d(s, x) + l(x, z), and we have extended S correctly. The resulting algorithm
is named Dijkstra’s algorithm.

A naive implementation would compute, in each of the n − 1 steps, all
these sums from scratch. This would cost O(nm) time. It is better to
exploit monotonicity properties: Dijkstra’s algorithm computes iteratively
better and better paths from s to all other nodes. For x ∈ S, the computed
distances d(s, x) are already correct, as the above inductive argument has

1



shown. The implementation trick is now to maintain preliminary distances
d(s, z) also to all nodes z /∈ S. They may be larger than the correct distances.
We define d(s, z) to be the length of a shortest path consisting of a path
inside S, plus one last edge to z. Whenever some z /∈ S is moved to S, we
must update all preliminary distances d(s, y), y /∈ S, since we might get a
shorter path from s to y, with z as the second last node.

To avoid confusion it is wise to write down the whole algorithm again:
Initially we set S := ∅, d(s, s) := 0 and d(s, y) := ∞ (or a huge constant)
for all y 6= s. Then, as long as S 6= V , we put a node z /∈ S with smallest
d(s, z) in S (knowing that this is the correct distance), and for all y /∈ S
we update d(s, y) as follows: d(s, y) := min(d(s, y), d(s, z) + l(z, y)). Since
these are less than n update operations, the time complexity is O(n2).

Dijkstra’s algorithm chooses the next node according to a greedy rule,
but it also exhibits elements of dynamic programming. We see that these
techniques should not be understood as a rigid classification of efficient algo-
rithms, rather, they are just general design principles, and many algorithms
combine several techniques.

For sparse graphs we can further improve the time for Dijkstra’s al-
gorithm to O(m log n). Observe that, in each iteration, only the smallest
d(s, z), z /∈ S, is needed. A weakness of the above implementation is that we
still search for a minimum in each iteration. By storing all the preliminary
distances in a priority queue we can obtain each minimum in O(log n) time.
Now each update operation needs O(log n) time, too, instead of O(1). (The
old value must be removed and the new value inserted in the data structure.)
But since every edge (z, y) is involved in only update operation, the claimed
time bound follows.

Now we have computed the distances d(s, y). In order to get some short-
est path from s to any y, we may proceed as in every dynamic programming
algorithm and trace the minimum computations backwards.

We remark without details that the Shortest Paths problem becomes
much easier in DAGs. There one can take advantage of a topological order
and give a pretty straightforward dynamic programming algorithm that runs
in O(m) time.

Network Flow Algorithms

Let G = (V,E) be a directed graph where every edge e has an integer
capacity ce > 0. Two special nodes s, t ∈ V are called source and sink, all
other nodes are called internal. We suppose that no edge enters s or leaves t.

2



A flow is a function f on the edges such that 0 ≤ f(e) ≤ ce holds for all edges
e (capacity constraints), and f+(v) = f−(v) holds for all internal nodes v
(conservation constraints), where we define f−(v) :=

∑
e=(u,v)∈E f(e) and

f+(v) :=
∑

e=(v,u)∈E f(e). (As a menominic aid: f−(v) is consumed by

node v, and f+(v) is generated by node v.) The value of the flow f is
defined as val(f) := f+(s). The Maximum Flow problem is to compute a
flow with maximum value.

For any flow f in G (not necessarily maximum), we define the residual
graph Gf as follows. Gf has the same nodes as G. For every edge e of
G with f(e) < ce, Gf has the same edge with capacity ce − f(e), called a
forward edge. The difference is obviously the remaining capacity available
on e. For every edge e of G with f(e) > 0, Gf has the opposite edge with
capacity f(e), called a backward edge. By virtue of backward edges we
can “undo” any amount of flow up to f(e) on e by sending it back in the
opposite direction. The residual capacity is defined as ce−f(e) on forward
edges and f(e) on backward edges

Now let P be any simple directed s − t path in Gf , and let b be the
smallest residual capacity of all edges in P . For every forward edge e in P ,
we may increase f(e) in G by b, and for every backward edge e in P , we may
decrease f(e) in G by b. It is not hard to check that the resulting function
f ′ on the edges is still a flow in G. We call f ′ an augmented flow, obtained
by these changes. Note that val(f ′) = val(f) + b > val(f).

Now the basic Ford-Fulkerson algorithm works as follows: Initially
let f := 0. As long as a directed s − t path in Gf exists, augment the flow
f (as described above).

To prove that Ford-Fulkerson outputs a maximum flow, we must show:
If no s− t path in Gf exists, then f is a maximum flow.

The proof is done via another concept of independent interest: An s− t
cut in G = (V,E) is a partition of V into sets A,B with s ∈ A, t ∈ B. The
capacity of a cut is defined as c(A,B) :=

∑
e=(u,v):u∈A,v∈B ce.

For subsets S ⊂ V we define f+(S) :=
∑

e=(u,v):u∈S,v /∈S f(e) and f−(S) :=∑
e=(u,v):u/∈S,v∈S f(e). Remember that val(f) = f+(s)−f−(s) by definition.

(Actually we have f−(s) = 0 if no edge goes into s.) We can generalize this
equation to any cut: val(f) =

∑
u∈A(f+(u) − f−(u)), which follows easily

from the conservation constraints. When we rewrite the last expression for
val(f) as a sum of flows on edges, then, for edges e with both nodes in
A, terms +f(e) and −f(e) cancel out in the sum. It remains val(f) =
f+(A) − f−(A). It follows val(f) ≤ f+(A) =

∑
e=(u,v):u∈A,v/∈A f(e) ≤∑

e=(u,v):u∈A,v/∈A ce = c(A,B). In words: The flow value val(f) is bounded

3



by the capacity of any cut (which is also intuitive).
Next we show that, for the flow f returned by Ford-Fulkerson, there

exists a cut with val(f) = c(A,B). This implies that the algorithm in fact
computes a maximum flow.

Clearly, when the Ford-Fulkerson algorithm stops, no directed s− t path
exists in Gf . Now we specify a cut as desired: Let A be the set of nodes v
such that some directed s−v path is in Gf , and B = V \A. Since s ∈ A and
t ∈ B, this is actually a cut. For every edge (u, v) with u ∈ A, v ∈ B we have
f(e) = ce (or v should be in A). For every edge (u, v) with u ∈ B, v ∈ A we
have f(e) = 0 (or u should be in A because of the backward edge (v, u) in
Gf ). Altogether we obtain val(f) = f+(A)− f−(A) = f+(A) = c(A,B). In
words: The flow value val(f) equals the capacity of a minimum cut (which
is still intuitive). The last statement is the famous Max-Flow Min-Cut
Theorem.

It is important to notice that Ford-Fulkerson in the basic version does
not guarantee polynomial time; this depends on the capacities. But if we
always choose a shortest augmenting path, we get polynomial time – we
have to skip the proof of the time bound.

Bipartite Matching

Here is one of the simplest but also most important examples of a reduction
of another graph problem to Maximum Flow.

In a bipartite graph G = (X,Y,E), the node set is split into sets X,Y ,
and edges exist only between X and Y . A matching is a set of pairwise
node-disjoint edges. The Bipartite Matching problem asks to find a match-
ing of maximum size in a bipartite graph. Typical applications are job
assignment problems: Nodes in X are jobs to be done, nodes in Y are work-
ers or machines, and an edge means that the worker/machine is able to do
the job. A matching is then a set of jobs that can be executed in parallel.

Bipartite Matching is reduced to Maximum Flow as follows: Add a
source s and a sink t, insert edges from s to all nodes in X, and from all
nodes in Y to t, orient the edges of E from X to Y , and set all edge capac-
ities 1. Then the maximum matchings correspond exactly to the maximum
flows with integer values (0 or 1) on the edges. (This equivalence needs a
proof, however this is simple enough.) Now we can use Ford-Fulkerson to
solve the problem in O(mn) time. (Do you see why the time bound holds?)

One can also find maximum matchings in general graphs is polynomial
time, but this is much more tricky.

4


