

Parsing Expressions

Original slides by Koen Lindström Claessen

Expressions

• Such as
– 5*2+12
– 17+3*(4*3+75)

• Can be modelled as a datatype

data Expr
 = Num Int
 | Add Expr Expr
 | Mul Expr Expr

Showing and Reading

• We have seen how to write

• This lecture: How to write

showExpr :: Expr -> String

readExpr :: String -> Expr

Main> showExpr (Add (Num 2) (Num 4))
”2+4”
Main> showExpr (Mul (Add (Num 2) (Num 3)) (Num 4)
(2+3)*4

built-in show
function produces

ugly results

built-in read
function does not
match showExpr

Parsing

• Transforming a “flat” string into something
with a richer structure is called parsing
– expressions
– programming languages
– natural language (swedish, english, dutch)
– ...

• Very common problem in computer
science
– Many different solutions

Parser libraries

• Haskell has many nice libraries that make
it easy to write parsers
– E.g. parsec included in the Haskell Platform:

http://hackage.haskell.org/package/parsec

• In this lecture we will do it from scratch

http://hackage.haskell.org/package/parsec

Expressions

• How to parse?

data Expr
 = Num Int
 | Add Expr Expr
 | Mul Expr Expr

Recursive strategy?

• Our usual strategy (divide and conquer):

– Split the input in parts

– Recursively process the parts

– Combine the results of the recursive calls

• But how do we know where to split the string?

Examples: “(1+2)*3” “1+2*3”

The structure of expression strings

• An expression must be of the form
“t1 + t2 + … + tm”

• Each term ti must be of the form
“f1 * f2 * … * fn”

• Each factor fi must be a number

• We need four different parsers, one for each
category: expression, term, factor, number

One or more terms with
'+' between them

We're currently ignoring
parentheses

Parsing strategy

Each parser will eat as much of the input as “makes
sense” to it, and leave the rest untouched

– Parse “1*2+3asd” as an expression
• result: Add (Mul (Num 1) (Num 2)) (Num 3)
• rest: “asd”

– Parse “1*2+3asd” as a term
• result: Mul (Num 1) (Num 2)
• rest: “+3asd”

– Parse “1*2+3asd” as a factor
• result: Num 1
• rest: “*2+3asd”

Solves the problem of
where to split the string

Parsing example

• Parse “1+2” as an expression
– Should have the form “t1 + t2 + … + tm”, so we

start by looking for a term

• Parse “1+2” as a term
– Should have the form “f1 * f2 * … * fn”, so we

start by looking for a factor

• Parse “1+2” as a factor
– Should be a number

… continue on the next slide

Parsing example

• Parse “1+2” as a number
– Return the number and the rest of the string: (1,“+2”)

• The factor parser returns (Num 1, “+2”)
• The term parser returns (Num 1, “+2”)
• The expression parser now has hold of the first

term.
– Since the rest of the string starts with “+”, it goes on to

look for another term.
– Now the rest of the string is “”, so there are no more

terms, and it can return (Add (Num 1) (Num 2), “”)

The structure of expression strings

• An expression must be of the form
“t1 + t2 + … + tm”

• Each term ti must be of the form
“f1 * f2 * … * fn”

• Each factor fi must be a number

Expression Grammar

A formal way of expressing the structure of
expressions (EBNF):

– expr ::= term “+” ... “+” term

– term ::= factor “*” ... “*” factor

– factor ::= number

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form

Representing parsers

• A parser receives a string, and either fails
or returns a value plus the rest of the
string

type Parser a = String -> Maybe (a, String)

Parsing Numbers

number :: Parser Int

Main> number ”23”
Just (23, ””)
Main> number ”117junk”
Just (117, ”junk”)
Main> number ”apa”
Nothing
Main> number ”23+17”
Just (23, ”+17”)

how to
implement?

String -> Maybe (Int,String)

Parsing Numbers

number :: Parser Int
number (c:s)
 | isDigit c = Just (numb,rest)
 | otherwise = Nothing
 where
 numb = read (takeWhile isDigit (c:s))
 rest = dropWhile isDigit (c:s)

import Data.Char at the top of
your file

read :: Int -> String

or

read :: Read a => a -> String

Case expressions

• We have seen many examples of pattern
matching in function definitions

• Sometimes we just want to match on a local
value given by an expression

• Use case expressions for this

rank (Card r _) = r

isPDF :: FilePath -> Bool
isPDF s = case reverse (take 4 (reverse s)) of
 “.pdf” -> True
 _ -> FalseNote: cases must

have same indentation

Parsing Numbers

Main> num ”23”
Just (Num 23, ””)
Main> num ”apa”
Nothing
Main> num ”23+17”
Just (Num 23, ”+17”)

number :: Parser Int

num :: Parser Expr
num s = case number s of
 Just (n, s’) -> Just (Num n, s’)
 Nothing -> Nothing

a case
expression

Parsing Expressions

expr :: Parser Expr

Main> expr ”23”
Just (Num 23, ””)
Main> expr ”apa”
Nothing
Main> expr ”23+17”
Just (Add (Num 23) (Num 17), ””)
Main> expr ”23+17mumble”
Just (Add (Num 23) (Num 17), ”mumble”)

Parsing Expressions

expr :: Parser Expr
expr s1 = case term s1 of
 Just (a,s2) -> case s2 of
 ’+’:s3 -> case expr s3 of
 Just (b,s4) -> Just (Add a b, s4)
 Nothing -> Just (a,s2)
 _ -> Just (a,s2)
 Nothing -> Nothing

start with a
term?

is there a +
sign? can we parse

another expr?

Next, define the term parser

Parsing Terms

term :: Parser Expr
term s1 = case factor s1 of
 Just (a,s2) -> case s2 of
 ’*’:s3 -> case term s3 of
 Just (b,s4) -> Just (Mul a b, s4)
 Nothing -> Just (a,s2)
 _ -> Just (a,s2)
 Nothing -> Nothing

just copy the code
from expr and make

some changes!

NO!!

chain :: Parser a -> Char -> (a->a->a) -> Parser a

Parsing Chains

chain p op f s1 =
 case p s1 of
 Just (a,s2) -> case s2 of
 c:s3 | c == op -> case chain p op f s3 of
 Just (b,s4) -> Just (f a b, s4)
 Nothing -> Just (a,s2)
 _ -> Just (a,s2)
 Nothing -> Nothing

argument p

argument op recursion argument f

expr, term :: Parser Expr
expr = chain term ’+’ Add
term = chain factor ’*’ Mul

a higher-order
function

Factor?

factor :: Parser Expr
factor = num

Parentheses

• So far no parentheses
• But expressions look like

– 23
– 23+5*17
– 23+5*(17+23*5+3)

a factor can be a
parenthesized

expression again

Expression Grammar

– expr ::= term “+” ... “+” term

– term ::= factor “*” ... “*” factor

– factor ::= number
 | “(” expr “)” Two alternatives

Factor

factor :: Parser Expr
factor (’(’:s) =
 case expr s of
 Just (a, ’)’:s1) -> Just (a, s1)
 _ -> Nothing

factor s = num s

Reading an Expr

readExpr :: String -> Maybe Expr
readExpr s = case expr s of
 Just (a,””) -> Just a
 _ -> Nothing

Main> readExpr ”23”
Just (Num 23)
Main> readExpr ”apa”
Nothing
Main> readExpr ”23+17”
Just (Add (Num 23) (Num 17))

Only succeed if there is
no junk left

Summary

• Parsing becomes easier when
– Failing results are explicit
– A parser also produces the rest of the string

• Case expressions
– To look at an intermediate result

• Higher-order functions
– Avoid copy-and-paste programming

The Code (1)
readExpr :: String -> Maybe Expr
readExpr s = case expr s of
 Just (a,””) -> Just a
 _ -> Nothing

expr, term :: Parser Expr
expr = chain term ’+’ Add
term = chain factor ’*’ Mul

factor :: Parser Expr
factor (’(’:s) =
 case expr s of
 Just (a, ’)’:s1) -> Just (a, s1)
 _ -> Nothing
factor s = num s

The Code (2)
chain :: Parser a -> Char -> (a->a->a) -> Parser a
chain p op f s1 =
 case p s1 of
 Just (a,s2) -> case s2 of
 c:s3 | c == op -> case chain p op f s3 of
 Just (b,s4) -> Just (f a b, s4)
 Nothing -> Just (a,s2)
 _ -> Just (a,s2)
 Nothing -> Nothing
number :: Parser Int
number (c:s) | isDigit c = Just (digits 0 (c:s))
number _ = Nothing

digits :: Int -> String -> (Int,String)
digits n (c:s) | isDigit c = digits (10*n + digitToInt c) s
digits n s = (n,s)

Testing readExpr

prop_ShowRead :: Expr -> Bool
prop_ShowRead a =
 readExpr (show a) == Just a

Main> quickCheck prop_ShowRead
Falsifiable, after 3 tests:
-2*7+3

negative
numbers?

Fixing the Number Parser

number :: Parser Int
number (c:s) | isDigit c = Just (digits 0 (c:s))
number ('-':s) = fmap neg (number s)
number _ = Nothing

fmap :: (a -> b) -> Maybe a -> Maybe b
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

neg :: (Int,String) -> (Int,String)
neg (x,s) = (-x,s)

This function is actually
overloaded. Works for many

types besides Maybe.

Testing again

Main> quickCheck prop_ShowRead
Falsifiable, after 5 tests:
2+5+3

Testing again

Main> quickCheck prop_ShowRead
Falsifiable, after 5 tests:
2+5+3

Add (Add (Num 2) (Num 5)) (Num 3)

Add (Num 2) (Add (Num 5) (Num 3))

“2+5+5”

show

read

Testing again

Main> quickCheck prop_ShowRead
Falsifiable, after 5 tests:
2+5+3

Add (Add (Num 2) (Num 5)) (Num 3)

Add (Num 2) (Add (Num 5) (Num 3))

“2+5+5”

show

read

+ (and *) are
associative

Fixing the Property (1)

prop_ShowReadEval :: Expr -> Bool
prop_ShowReadEval a =
 fmap eval (readExpr (show a)) == Just (eval a)

Main> quickCheck prop_ShowReadEval
OK, passed 100 tests.

The result does not have to be exactly the same,
as long as the value does not change.

assoc :: Expr -> Expr
assoc (Add (Add a b) c) = assoc (Add a (Add b c))
assoc (Add a b) = Add (assoc a) (assoc b)
assoc (Mul (Mul a b) c) = assoc (Mul a (Mul b c))
assoc (Mul a b) = Mul (assoc a) (assoc b)
assoc a = a

Fixing the Property (2)

prop_ShowReadAssoc :: Expr -> Bool
prop_ShowReadAssoc a =
 readExpr (show a) == Just (assoc a)

Main> quickCheck prop_ShowReadAssoc
OK, passed 100 tests.

non-trivial
recursion and

pattern matching

(study this definition
and what this
function does)

The result does not have to be exactly the same,
only after rearranging associative operators

Properties about Parsing

• We have checked that readExpr correctly
processes anything produced by
showExpr

• Is there any other property we should
check?
– What can still go wrong?
– How to test this?

Very difficult!

Summary

• Testing a parser:
– Take any expression,
– convert to a String (show),
– convert back to an expression (read),
– check if they are the same

• Some structural information gets lost
– associativity!
– use “eval”
– use “assoc”

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Sida 39

