Object Oriented Programming TDASH47

Krasimir Angelov, tel. 031 772 10 19
2016-08-16

The total number of points is 40. 20 points certainly guarantee a pass.
27p correspond to grade 4 and 32p to grade 5.

No other help materials except an English Dictionary are allowed. Write
clean and readable Java code. Trivial syntax errors will be tolerated without
affecting the grades. You don’t have to comment your code unless if you
really want to.

1. Read the following program:

public class Questionl {
public static int count(int[] a) {

int i = 0;
while (i < a.length) {

if (a[i] == 0)

break;

i++;
}
return i;

¥

public static void main(String[] args) {
System.out.println(count(new int[] {1,2,0,4}));
System.out.println(count(new int[] {1,2,4,0,2,1}));
System.out.println(count(new int[] {1,2,2,1}));

¥

What will the program print when it is executed? (4p)



2. In this task we do simple array processing:

e Implement the method:
public static double findNext(double x, double[] a)

which receives a number x and an array a of doubles. The method
should return the value of the smallest element in a which is big-
ger than x. For example if the method is called with x=3.5 and
a={2,0,1,6,0,8,1,6} then it should return 6. If all elements in
the array are smaller or equal to x, than the method should return
Double.POSITIVE_INFINITY. (4p)

e Implement a class Question2 which can be used to test the method
findNext. The class should be possible to run like this:

> java Question2 3.5 2016 0816
6

i.e. it takes x as the first command line argument, followed by a
sequence of numbers which are the elemenets of a. (4p)

3. In this task you should implement a model class Card, which simu-
lates the behaviour of a Vasttrafik card. It should have the following
components:

e Two instance variables:

— One of type double which is the current saldo in the card.

— One of type long which keeps track of the time when the
current stamp on the card expires.

e A constructor:
public Card(double saldo)

which creates a new card with an initial saldo given by the argu-
ment of the constructor. It should also give an appropriate value
for the time variable. The value should be such that, if the method
stamp (bellow) is called immediately after the constructor, then
the passenger should not get response BYTE.

e a method:
public void load(double amount)

which loads the card, i.e. it adds the given amount to the saldo.

e two methods:



public double getSaldo()
public long validTo()

that return the current saldo and the time when the current stamp
expires.

e a method
public Status stamp()

which simulates the creation of a new stamp on the card. This
is where most of the code will be. The method should return a
value of type Status which is defined as:

enum Status {0K, FAIL, BYTE}

The implementation should consists of three rules:

— If the current stamp on the card has not expired yet, then the
method does nothing and returns BYTE.

— If the current credit on the card is less than 10 SEK, then the
metod should return FAIL.

— Otherwise, the method should deduce the price of the ticket,
i.e. 22 SEK, from the saldo. It should also set a new expira-

tion time which is 90 minutes after the current time. Finally
the method should return status OK.

Note: In order to implement some of the methods you will need to
know the current time. The easiest way to do this is to use the static
method System.currentTimeMillis (). This will give you the current
time in milliseconds. If the time is measured in milliseconds then each
new stamp should be valid for 5400000 milliseconds (= 90 minutes).

(8p)

. Implement the method:
public static int pow(int x, int n)

which computes the n-th degree of x, i.e. ™. The computation should
be done by a repeated multiplication in a loop. There are different
ways to do this, but you should implement the optimal solution where
the exponent becomes two times smaller on every iteration. Use the
following equations:

20 =1

2k k 21— (

22 = (x % x)¥, x r* ) xa

3



The first equation is the basic case when the exponent is zero. The sec-
ond equation covers the case where the exponent is even, i.e. n % 2 == 0.
In that case just replace x with x*x and divide the exponent by two.
Finally, if the exponent is odd then you should do the same but in
addition you should multiply the final product with the current value
of x. Apply this rules in a loop until you reach the basic case n ==

(10p)

. The file flights.txt contains information about the available flights
from one city to another. The following is an example for the file
content:

Gothenburg London PZ2122 200
Gothenburg Stockholm PZ3100 100
Gothenburg Stockholm XD3100 300

Paris Madrid LL1232 120
Paris Madrid XU2232 120
Paris Madrid ZA1135 250

Every line starts with the names of the initial and the final airport,
followed by the code for the flight and its price. You can assume that
both the airport names and the flight codes always consist of a single
word, and the price is always an integer. This means that parsing the
file is possible by using next () and nextInt() from Scanner.

Implement the method:

public static List<String> getCheapestFlight(String src,String dst)
throws FileNotFoundException

which takes the names of the initial and the final airports and returns
the cheapest flights between these destinations. For example the two
cheapest flights between Paris and Madrid are LL1232 and XU2232.

(10p)



